
Esa/Gv s.r.l.
15 via Zamboni, Cp 43
41011 Campogalliano Modena Italy
tel. +39 059 851414 - fax +39 059 851313
http://www.esagv.it - E-mail: info@esagv.it

OEM Environment

Programming Description (DP)
User Documentation

Valid for:

Product: Kvara SW 162
from version 3.14

Edition: June 2003
Code: 91752.DP.1.GB

91752.DP.1.GB Esa/Gvii

Restrictions Duplication, transmission and use of this document or its contents shall be considered
prohitibed unless prior authorization has been received from Esa/Gv. All rights are
reserved.
Even when authorized, modification of this document (either by computer or on paper)
voids the guarantees specified below.

Guarantees The product may offer performances that are not described in these manuals. Esa/Gv
shall neither be obliged to maintain these functions in new versions of the product nor
to guarantee the relative assistance.

Checks have been carried out in order to ensure that the contents of these manuals
correspond to the documented product. Despite this fact, there may be discrepancies.
Esa/Gv therefore offers no guarantees as to the full compliance and completeness of the
texts.
The information in this document is periodically revised and new editions are issued
when necessary.

This manual has been compiled in partial compliance with ANSI/IEEE std 1063-1987
“IEEE Standard for software User Documentation”.

Editions This document is liable to be modified without prior notice. These modifications may
involve further editions or revisions of the document.
Further editions imply complete substitution of the document.
Revision involves replacement/addition/elimination of pages of the document.
Each page is identified by the code of the document at the bottom.

Notes
MS-DOS® Trademark registered by Microsoft Corporation.

Esa/Gv 91752.DP.1.GB iii

The chronological list of editions of this document is given in the following table:

Evolution of the document
Edition Document Code Release Type of edition

19/03/2001 91752.DP.0.GB 0 New document

04/06/2003 91752.DP.1.GB 1 Revision

Modifications

Release Chapters - Pages Description

91752.DP.1.GB Esa/Gviv

DP Programming Description

Esa/Gv 91752.DP.1.GB i

Programming Description

Notes for the reader... i

Explanation of the symbols.. ii

Printer’s conventions .. iii

Glossary ... iv

1 Introduction ... 1.1

1.1 Definitions...1.1

1.2 Conventions used in the description of the syntax ...1.4

2 Standard Programming .. 2.1

2.1 Writing a program...2.1

2.1.1 An C program..2.1

2.1.2 Program start ..2.1

2.1.3 Selecting ISO mode ..2.2

2.1.4 Program end ...2.2

2.1.5 Block number ..2.3

2.1.6 Messages..2.3

2.2 Setting machining conditions..2.4

2.2.1 Defining a point ...2.4

2.2.2 Interpolation parameters ...2.4

2.2.3 Absolute point programming ...2.5

2.2.4 Incremental programming ...2.6

2.2.5 Selecting the unit of measurement..2.6

2.2.6 Selecting origin translation ..2.7

2.2.7 Cancelling origin translation ..2.8

2.2.8 Additive origin translation ..2.9

2.2.9 Selecting the work plane ...2.9

2.2.10 Selecting the contour milling plane and the length correction direction2.11

2.3 Programming the feed..2.12

2.3.1 Feed command ...2.12

2.3.2 Rapid feed...2.13

2.3.3 Linear interpolation..2.14

2.3.4 Circular interpolation ...2.15

2.3.5 Thread-cutting ...2.16

2.3.6 Tapping ...2.18

Programming Description DP

91752.DP.1.GB Esa/Gvii

2.3.7 Timed halt ...2.19

2.3.8 Positioned halt...2.19

2.4 Special interpolations ...2.20

2.4.1 Auxiliary axis interpolations ...2.20

2.4.2 Cylindrical programming ...2.20

2.5 Spindle orientation..2.22

2.5.1 M19: Spindle orientation..2.22

2.5.2 On-the-fly spindle orientation ..2.23

2.6 Programming axis and spindle speed ..2.24

2.6.1 Setting the feed rate..2.24

2.6.2 Continuous feed mode ..2.25

2.6.3 Continuous feed mode with speed look-ahead...2.26

2.6.4 Selecting the feed mode ...2.27

2.6.5 Selecting the spindle rotation mode ..2.28

2.6.6 Setting the spindle rotation mode..2.28

2.6.7 Inverse feed ..2.31

2.7 Polar axes programming ..2.33

2.7.1 Polar axes with travel limitation ...2.33

2.7.2 Round axes ...2.33

2.7.3 Selection of the direction and rpm rate ...2.35

2.7.4 Speed programming in the presence of polar axes ..2.39

2.8 Auxiliary Functions..2.41

2.8.1 Functions M and T ..2.41

2.9 Tool compensation ...2.43

2.9.1 Tool length correction..2.43

2.9.2 Tool radius compensation ...2.44

3 Advanced Programming... 3.1

3.1 Selecting Automation Language mode...3.1

3.2 Parametric Programming ...3.2

3.2.1 Global system variables ..3.2

3.2.2 Pre-defined numeric variables ..3.3

3.2.3 Assigning a variable pre-defined numeric variables..3.3

3.2.4 Symbolic variables ..3.4

3.2.5 Declaration of Symbolic Variables...3.4

3.2.6 Allocation of Symbolic Variables ...3.6

3.2.7 Expressions...3.7

DP Programming Description

Esa/Gv 91752.DP.1.GB iii

3.2.8 Use of #QNAN ..3.15

3.3 Program flow control...3.16

3.3.1 Unconditional jump..3.16

3.3.2 Test ...3.16

3.3.3 Conditioned Test ...3.17

3.3.4 WHILE Block...3.18

3.3.5 REPEAT Block ..3.19

3.3.6 FOR Block...3.20

3.3.7 Cycle interruption - BREAK ...3.21

3.3.8 Repeat...3.22

3.3.9 Nesting levels: sub-programs and fixed cycles ...3.23

3.3.10 Subprogram start (fixed cycle) ..3.24

3.3.11 Subprogram end (fixed cycle) ...3.25

3.3.12 Program end ...3.26

3.3.13 Call to subprogram CFU (user fixed cycle) ...3.26

3.3.14 Subprogram call CFS (system fixed cycle) ...3.27

3.3.15 Cancels a fixed cycle's mode..3.28

3.3.16 Call-back function in “C” language ..3.29

3.3.17 Forced escape from the interpreter with error...3.30

3.4 Special functions ..3.31

3.4.1 Await termination...3.31

3.4.2 Message display in phase with the executor...3.31

3.4.3 Memory read/write...3.31

3.4.4 Enter a physical or logical output ..3.32

3.4.5 Enabling hydraulic tapping ..3.33

3.4.6 Defining path axes ..3.34

3.4.7 Definition of the Axes belonging to the Channel ...3.35

3.4.8 Correction by zones ..3.36

3.4.9 Enabling program simulation...3.37

3.4.10 Identifier of the number of the channel being executed ..3.38

3.4.11 Probe target reading..3.39

3.4.12 Axis target reading ..3.39

3.5 Reference system transformations...3.41

3.5.1 PRS - Preset machine origin...3.41

3.5.2 DEF - Run-time redefinition of the axis names ...3.41

3.5.3 SYS – Run-time re-allocation of the axes name ...3.42

3.5.4 MIR - Mirrored machining..3.42

Programming Description DP

91752.DP.1.GB Esa/Gviv

3.5.5 ROT – Rotation of the contouring plane..3.45

3.5.6 SHF – Transfer of Origin ...3.46

3.5.7 MLV - Selection of the matric conversion level. ..3.47

3.5.8 Definition of a tilting plane ...3.49

3.5.9 Tilting plane enabling ..3.50

3.6 Automatic plane geometry..3.51

3.6.1 Chamfer between two linear segments...3.51

3.6.2 Radius between two linear segments ...3.52

3.7 Tool corrector auxiliary functions..3.53

3.7.1 Machining allowance management...3.53

3.7.2 Tangential feed in/out..3.53

3.7.3 Tool life and wear management..3.55

3.8 Three dimensional tool corrector..3.56

3.8.1 TWI: Spindle settings ..3.56

3.8.2 THD: Tool holder settings ...3.56

3.8.3 Conventions regarding angles of rotation ...3.56

3.8.4 Orientation with polar axis coordinates ...3.57

3.8.5 Orientation by Euler's Angles ..3.57

3.8.6 Orientation by roll-pitch-yaw (RPY) ...3.59

3.8.7 Orientation by the tool axis unit vector ..3.60

3.8.8 Vectorial tool radius compensation ...3.62

3.8.9 Automatic determination of the pertinent plane and machining with the axis in tangency
...3.63

3.8.10 Discriminating between the interchangeable cutting edges of a tool3.67

3.8.11 Machining depth compensation along the tool axis ..3.69

3.8.12 Machining depth compensation along the tool radius ...3.70

3.9 Feed in strategies ...3.71

3.9.1 Definitions..3.71

3.9.2 Axial/radial feed in ...3.71

3.9.3 Axial/radial feed out...3.74

3.9.4 Compensation depending on a section of the tool along the trajectory in its in-going
point ...3.78

3.9.5 Compensation depending on a section of the tool along the trajectory in its out-going
point ...3.82

3.10 Feed Control...3.83

3.10.1 Modification or Automatic speed control parameters..3.83

3.11 Independent axis synchronous/asynchronous positioning ...3.85

3.11.1 Independent axis synchronous positioning ...3.85

DP Programming Description

Esa/Gv 91752.DP.1.GB v

3.11.2 Independent axis asynchronous positioning ...3.86

3.11.3 Prallel spindle orientation ..3.87

3.12 Modifying axis parameters..3.88

3.12.1 Following error...3.88

3.12.2 Axis acceleration time ...3.88

3.12.3 Axis deceleration time...3.89

3.12.4 Axis emergency deceleration time ..3.89

3.12.5 Axis maximum speed..3.90

3.12.6 Axis ramp to S...3.91

3.12.7 Axis jerk settings ...3.92

3.13 Modification of the interpolation parameters ..3.93

3.13.1 Interpolation acceleration time setting...3.93

3.13.2 Interpolation deceleration time setting ..3.93

3.13.3 Maximum interpolation speed setting..3.94

3.13.4 Interpolation ‘S’ ramp time setting...3.94

3.13.5 Jerk setting during interpolation ..3.95

4 Fixed Cycle Systems (FCS).. 4.1

4.1 G192 macro Generation of a grid of points ..4.2

4.2 G193 macro - generation of points distributed along a circumference arc.................................4.5

4.2.1 G81 Fixed Cycle: drilling ...4.7

4.2.2 G83 Fixed Cycle: drilling with swarf discharge or breaking...4.9

4.2.3 G84 Fixed Cycle: Tapping...4.12

4.2.4 G86 Fixed Cycle: Boring ...4.13

4.2.5 G88 Fixed Cycle: drilling cavity walls ..4.14

4.2.6 G133 Fixed cycle: Thread-cutting ...4.16

5 Tool parameters .. 5.1

5.1 Definitions...5.1

5.2 ER (Entity Relationship) diagram of the entities of a machining center of which the geometry
and power train are controlled..5.3

5.2.1 Key ..5.3

5.2.2 Diagram...5.3

5.3 Other definitions ...5.5

5.4 Head descriptor ..5.6

5.4.1 Data structure..5.6

5.4.2 Description of the geometry and actuators ...5.7

5.5 Toolholder descriptor..5.13

Programming Description DP

91752.DP.1.GB Esa/Gvvi

5.5.1 Data structure..5.13

5.5.2 Description of geometry ..5.13

5.6 Tool or tool cutter descriptor...5.15

5.6.1 Data structure..5.15

5.6.2 Description of geometry ..5.15

5.6.3 Description of other technological data ...5.17

5.6.4 Logic management..5.18

5.6.5 Broken tools ..5.18

END OF SUMMARY

DP Notes for the reader

Esa/Gv 91752.DP.1.GB i

Notes for the reader

General information The information in this manual only applies to the software versions indicated on the
frontispiece.

Not all the available functions may be described in this manual. In these cases, Esa/Gv
shall be obliged to neither guarantee these functions nor include them in future versions.

Purpose The purpose of this document is to help the operator when programming the processes.

Users This document contains information for:

• technicians with a good working knowledge of the processing technology and
productive process. Basic knowledge of computer work.

Use of the document The document is divided into chapters that describe the programming operations, the
language and basic processing concepts.

Notification of
difficulties

Please contact Esa/Gv if any difficulties should arise when this manual is used.

Notes for the reader DP

91752.DP.1.GB Esa/Gvii

Explanation of the symbols

Graphic symbols may appear beside the text. These are used to emphasize information
of particular importance.

Attention
This symbol is used when failure to take the appropriate precautions could cause slight
damage to persons and property.

Danger
This symbol appears when failure to take the appropriate precautions or
accomplishment of incorrect manoeuvres could cause serious damage to persons
and/or property.

Important
This symbol appears in the manual to indicate information of particular importance. It
is essential to read these sections in order to fully understand the manual.

Option
This symbol indicates sections of the manual that describe optional functions or parts.
Use of optional performances must be established with the machine manufacturer.

Manufacturer
This symbol indicates those sections of the manual reserved to the machine
manufacturer.

Password
This symbol indicates sections of the manual that describe functions access to which is
safeguarded by software passwords.

CN
This symbol indicates sections of the manual that describe functions only available in
CN and not in the PC.

PC
This symbol indicates sections of the manual that describe functions only available in
the PC and not in CN.

DP Notes for the reader

Esa/Gv 91752.DP.1.GB iii

Printer’s conventions

Particular printer’s conventions are used to make it easier to identify the information in
this manual. These conventions are illustrated below.

Keyboard and video The following conventions are used.

• The names of the screen-printed keys are indicated in boldface and are enclosed
within square brackets. If the name of the key is preceded by “button”, reference is
being made to a key on the push button panel.

− [ENTER]. Identifies the key that bears the word ENTER.

− [+] indicates the + key of the keyboard, while button [+] indicates the + key of
the push button panel.

• The names of the function keys are indicated in boldface italics and are enclosed
within square brackets.

− [Plc Menu]. Identifies the function key that bears the words Plc Menu.

• References to fields and/or messages on the video are written in boldface italics.

• The specific text to be digitized by the user is underlined.

− If the manual indicates “digitize ok, the user must digitize exactly “ok”.

• DIRECTION or DIRECTIONAL keys is the collective name used to indicate the
UP, DOWN, LEFT and RIGHT keys.

• Pressure, in sequence, on a series of keys is written by separating the identifiers of
the required keys with the “>“ character.

− [Manual] > [START]. Describes pressure, in sequence, on the [Manual] and
[START] keys.

• Pressure on several keys at the same time is indicated by separating the identifiers of
the keys themselves with the “+” character.

− [SHIFT] + [àà] Describes contemporaneous pressure on the [SHIFT] and [àà]
keys.

Text The following conventions are used.

• Italics are used to identify specialistic terms.

• Boldface is used to emphasize words of particular importance.

Notes for the reader DP

91752.DP.1.GB Esa/Gviv

Glossary

CNC This is an abbreviation of Computerized Numerical Control and indicates the instrument
that governs the machine, i.e. the electronic device through which the machining cycles
are programmed, the axes moved, etc..
It corresponds to one of the devices whose operation is described in this manual.

END OF PREFACE

DP Introduction

Esa/Gv 91752.DP.1.GB 1.1

1 Introduction

This chapter describes certain fundamental concepts that are at the basis of CNC
programming.
Examples containing instructions in the programming language will be used to highlight
certain aspects, while the explanation of each instruction is given in the dedicated
chapter.

1.1 Definitions

Program A program is a sequence of blocks, or program lines, that specify the various machining
phases.

Block A block consists of one or more words and terminates with the line feed character
([RETURN] key)

Word A word consists of a literal code and a number, not separated by spaces.

Example of a block formed by three words:
N100 X100.00 Y100.00

Characters N, X and Y identify the type of words in the block.

Example:

Word

Block

G17 G2 X200 R60

X200

Word

Word
Type Field

Word Word
Word

Figure 1.1 - Composition of a Block and a Word

Introduction DP

91752.DP.1.GB Esa/Gv1.2

Do not attempt to execute the sequence of commands in the previous example on the
machine. All the data specified are purely fictitious.

Program execution Program execution is the same as executing the blocks that form it in the established
order in order to obtain one or more machining operations.

Execution flow The execution flow is the sequence with which the instructions in a program or list are
executed. In the more simple cases, execution takes place in sequence starting from the
first instruction and terminating with the last (sequential flow). In other cases, the flow
can be altered, repeating or conditioning the execution of certain instructions (non-
sequential flow).

Axis An axis is a mechanical and electronic entity thanks to which the NC can control the
position of an element of the machine in relation to a reference point.

Three axes square to each other are required too identify a point in the three-
dimensional space. They are conventionally called X, Y and Z (main axes).
Z axis is generally parallel to the axis of rotation of the spindle.
The following axes can be defined:

X Main axis

Y Main axis

Z Main axis

U Auxiliary axis parallel to X

V Auxiliary axis parallel to Y

W Auxiliary axis parallel to Z

A Rotational axis with axis of rotation parallel to X

B Rotational axis with axis of rotation parallel to Y

C Rotational axis with axis of rotation parallel to Z

The target of an axis always refers to a point (origin) and can be expressed in:

• Millimeters or inches for linear axes

• degrees for rotational axes

Origin An origin is a point in space to which the axes targets refer.
After the sizing cycle, which normally takes place whenever the CNC is powered, the
axes are referred to the machine origin. However, when it comes to workpiece
programming, the targets can be referred to the workpiece origin which will be shifted in
relation to the machine origin by a value in the origin parameters, depending on the
position in which the workpiece clamping system is to be found.

DP Introduction

Esa/Gv 91752.DP.1.GB 1.3

Modal function A programming function (or address) is called modal if its effect also affects the
successive blocks, through to activation of another function that excludes the first.
A non-modal function, that only has effect in the block in which it is programmed, is
also called self-cancelling.

Default function A modal programming function is by default if it is activated automatically at the start of
the program.

Introduction DP

91752.DP.1.GB Esa/Gv1.4

1.2 Conventions used in the description of the syntax

Recourse is made to a conventional notation in the description of the syntax of each
instruction:

Capital text, for
example: Y, R,I, J, ...

Indicates the name of an address within a command.

Target Indicates a field in which the following information can be entered:

• A numeric value with sign and decimals used to indicate any coordinate or distance.
When the parameter that indicates the display unit is varied, the measurements will
be automatically converted from millimeters into inches, and vice versa. For inches,
two decimal figures are added as compared to the measurements expressed in
millimeters;

• A variable (see “Programming concepts”, Parametric Programming” section).

Angle Indicates a field in which the following information can be entered:

• An angle, expressed in degrees/decimal fractions of a degree (from 0.00 to 359.99).
The sexagesimal system cannot be used. Values of 360 or more or negative values
will be normalized, i.e. they will be brought within the 0 to 359.99 range.

• A variable.

END OF CHAPTER

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.1

2 Standard Programming

2.1 Writing a program

2.1.1 An C program

A NC program or partprogram is a sequence of blocks which define the machining of a
workpiece (part) on a numerical control machine tool.

PROGRAM START

BLOCKNUM WORDS COMMENT

BLOCKNUM WORDS COMMENT

BLOCKNUM WORDS COMMENT

PROGRAM END

2.1.2 Program start

Syntax comment %program_number

Description The program start block must precede all other blocks of the self program.

Comment An alphanumerical character string which briefly
describes the program.

È a comment must be inserted before the character %.

program_number A unique identifying number which corresponds to the
partprogram number.

Example
THREAD 3/8 GAS %1200
....
....
program body
....
....
M30

See also Program end, Subprogram start ("Advanced programming").

Standard Programming DP

91752.DP.1.GB Esa/Gv2.2

2.1.3 Selecting ISO mode

Syntax MODE = ISO
MODE = AUTO (default)

Description Assign the value ISO to the system variable MODE to select writing a partprogram
according to ISO/DIS 6983 (Parts I and II) Draft International Standard, September
1982 (Part I) and July 1988 (Part II).
In this mode Automation Language-specific features are not available.
In ISO mode comments are preceded by round brackets and an asterisk.

Example
(* INSERT WORKING PROGRAM)
N5 G17 (* WORK PLANE X-Y)
N15 G0 B90 (* TURN CNC TABLE 90 DEGREES)
N20 T1 M6 (*RECALLS TOOL/SPINDLE)
(*TOOL DIAMETER 10)
N30 D1 (*TOOL CORRECTOR)
N40 G0 X0 Y0
N50 Z125

2.1.4 Program end

Syntax M2 or M30

Description The program end block stops execution of the program.

Example
THREAD 3/8 GAS %1200
....
....
program body
....
....
M30

See also Program start.

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.3

2.1.5 Block number

Syntax Nblock_number

Description The block number is an optional word which must precede the other words in the block.
It gives a unique reference to the block itself.

block_number Unique block reference number.

Example
COMMENT %1
N10 X100 Y100 (feed to point P1(X100,Y100))
N20 Y200 (feed to point P2(X100,Y200))
G04 F1
....
....
M30

2.1.6 Messages

Syntax (text)

Description In ISO programming mode, text in round brackets () is displayed as

text A sequence of alphanumerical characters.

Example
N100 (ERROR: PRESS RESET)
N110 G04 F1
N120 JMP 110 (loop while awaiting reset)

Standard Programming DP

91752.DP.1.GB Esa/Gv2.4

2.2 Setting machining conditions

2.2.1 Defining a point

Syntax Xpos Ypos Zpos Upos Vpos Wpos Apos Apos Bpos Cpos

Description An axis code followed by a number defines a point's position on the axis.
To define a point the words for all the defined axes must be contained in a single block.
If a word relative to a given axis is missing, the system sets that axis to its value in the
definition of the preceding point.

Xpos

Ypos

Zpos

Upos

Vpos

Wpos

Apos

Bpos

Cpos

Example
X100 Y100 (feed to point P1(X100,Y100))
Y200 (feed to point P2(X100,Y200))

See also Feed command.

2.2.2 Interpolation parameters

Syntax Ipos (value on the X axis)
Jpos (value on the Y axis)
Kpos (value on the Z axis)
Rpos (radius of a circle)

Description Interpolation parameters define the basis for interpolation.
The codes I, J and K are used to define the coordinates of the centre of a circular
interpolation and the pitch in thread-cutting and tapping.
The code R defines the radius of a circular interpolation arc.

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.5

Ipos

Jpos

Kpos

Rpos

Example See the examples under Circular interpolation, Thread cutting,Tapping.

See also Circular interpolation, Thread cutting,Tapping

2.2.3 Absolute point programming

Syntax G90

Type of function Modal, default, mutually exclusive with G91

Description Absolute programming defines the points relative to the axis origins as defined at the
time.

Example
G90 X200 Y300 (feed to point P1(X200,Y300)
 Y700 (feed to point P2(X200,Y700)
 X1000 (feed to point P3(X1000,Y700)
 Y300 (feed to point P4(X1000,Y300)
 X200 (feed to point P4(X200,Y300)

See also Defining a point,Incremental programming.

Standard Programming DP

91752.DP.1.GB Esa/Gv2.6

y

G
90

x

G
90

G90

G91

G
91

G91

G
91

G90

Figure 2.1 - Incremental and absolute programming

2.2.4 Incremental programming

Syntax G91

Type of function Modal, mutually exclusive with G90

Description Incremental programming defines the points relative to the latest preceding point.
The I, J and K positions are also relative to the preceding values of the X, Y and Z axes.

Example
 X100 Y100 feed to point P1(X200,Y300)
G91 Y100 feed to point P2(X100,Y200)
 X100 feed to point P3(X200,Y200)
 Y-100 feed to point P4(X200,Y100)

See also Defining a point,Absolute point programming.

2.2.5 Selecting the unit of measurement

Syntax G70 (dimension in inches)
G71 (dimension in mm)

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.7

Type of function Modal, default, settable by a machine parameter

Description Selects programming in imperial or metric dimensions.
All axes are thus measured in inches (values after axis codes) except for the rotary axes
(A,B,C), the dimensions which define the centre of a circle, and the radius dimension.

Example
X100 Y100 (feed to point P1(X100,Y100))
G70 G91 Y3 (feed to point P2(X100,Y100+3*25.4))

See also Defining a point.

Standard Programming DP

91752.DP.1.GB Esa/Gv2.8

2.2.6 Selecting origin translation

Syntax G54 to select translation of origin 1
G55 to select translation of origin 2
G56 to select translation of origin 3
G57 to select translation of origin 4

Type of function Modal, mutually exclusive with G53

Desription Origin translation allows selection of one of the four part origins set by the operator via
the user interface. In the blocks after the origin selection block, the positions and tool
movements refer to the currently selected origin.
This function only works in cartesian coordinates XYZ.

Example
X100 Y100 (feed to point P1(X100,Y100))
G54 Y200 (feed to point P2(Xinalterato,Y200) relative to
part origin 1)

See also Defining a point,Cancelling origin translation.

y

x

G
54 G55

G56

Figure 2.2 - Programming the part origins

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.9

2.2.7 Cancelling origin translation

Syntax G53

Type of function Self-cancelling, default, mutually exclusive with G54, G55, G56, G57

Description Inclusion of this function in a block switches off the "origin translation" and "tool
compensation" functions. The programmed dimensions are therefore referred to the
machine origin.
This function is used for positioning the tool with respect to the machine origin,
irrespective of the part origin (for example, for returning to the tool magazine).

Example
G54 X100 Y100 (feed to point P1(X100,Y100) relative to the
part origin)
G53 X1000 Y2000 (feed to point P2(X1000,Y2000) relative to
the machine origin)
X100 Y200 (feed to point P3(X100,Y200) relative to the
part origin)

See also Defining a point, Selecting origin translation.

Standard Programming DP

91752.DP.1.GB Esa/Gv2.10

2.2.8 Additive origin translation

Syntax G58 Xpos Yposfor additive translation of origin 1
G59 Xpos Yposfor additive translation of origin 2

Type of function Modal

Xpos

Ypos

Zpos

Description Additive origin translation adds origin translation dimensions to the part origin, for
defining local origins on the part as required.
The translation values are defined for the primary axes (XYZ) or the auxiliary axes
(UVW), by the values set in the same block.
To cancel additive origin translation, set the translation values to zero.

Example
X100 Y100 (feed to point P1(X100,Y100))
G58 Y50 (move the origin to P2(X0, Y50))
X100 Y100 (feed to point P3(Xunchanged,Y+50))
G58 Y0 (reset the part origin)

See also Defining a point, Selecting origin translation.

2.2.9 Selecting the work plane

Syntax G17 (select XY plane, compensate tool length on Z)
G18 (select ZX plane, compensate tool length on Y)
G19 (select YZ plane, compensate tool length on X)

Type of function Modal.
Default: G18 if the Y axis does not exist (lathe), otherwise G17.

Description Selecting the work plane defines:

• the plane on which the arc is executed in a circular interpolation

• the axis along which the tool is compensated

• the plane for tool radius correction

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.11

G17

Y

X

Z

G3

G2

G19

G3

G2

G18
G3

G2

Figure 2.3 - Work plane

Example
X100 Y100 (feed to point P1(X100,Y100))
G17 G2 X200 R60 (executes an arc on the XY plane)

See also Circular interpolation,Tool compensation.

Standard Programming DP

91752.DP.1.GB Esa/Gv2.12

2.2.10 Selecting the contour milling plane and the length correction direction

Syntax G16 <name axis I> <name axis II> <name axis III> <direction of length correction>

Type of function Modal.

Description Selects the contour milling plane(or where the tool radius correction is applied) by
selection of the first and second axis. Any contour milling plane can be specified.
Furthermore, G16 enables selection of the direction and axis of length correction via
specification of the third axis and sign ('+' / '-'). The third axis can be freely chosen from
among the configured cartesian axes. Tool correction cannot therefore be applied
directly along an auxiliary (UVW) or polar (ABC) axis.

G16 has the following features:

• definition of the radius correction plane (which is also the machining plane).

• definition of the axis and direction of length correction;

G17 àG16 XYZ+
G18à G16 ZXY+
G19à G16 YZX+

Example
G16 U Z Y+

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.13

2.3 Programming the feed

2.3.1 Feed command

Syntax Xpos Ypos Zpos Upos Vpos Wpos Apos Apos Bpos Cpos

Description The machine axes are moved to the desired point by simply specifying the point of
arrival.
The way in which the feed is executed depends on the selections made.

X, Y, Z, U, V, W pos Linear coordinate (in mm) of the point of arrival.

A, B, C pos Angular coordinate (in degrees) of the point of arrival.

Example
X100 Y100 (feed to point P1(X100,Y100))
Y200 (feed to point P2(X100,Y200))

See also Defining a point, Rapid feed.

Standard Programming DP

91752.DP.1.GB Esa/Gv2.14

2.3.2 Rapid feed

Syntax G0

Type of function Modal, default, mutually exclusive with G1, G2, G3, G33, G63

Description Rapid feed mode moves the machine's axes to the point of arrival in the shortest time
possible within the limits of the machine's operational parameters.
Rapid feed is used for moving to the machining start point, tool change positions, etc.
The feed speed set with the F parameter is overridden.
If Rapid feed with independent axes (machine parameters) is enabled, each axis moves
autonomously at its maximum speed. If this option is not enabled, the axes move in
interpolated mode at the maximum speed, within the limits of the various axes.

Axes with finite travel are handled without modular arithmetic.
For modular axes (infinite travel) the following considerations apply:

• the target dimension (modulo 360), determines the angle to be reached;

• the direction is set so as to reach the target with the shortest possible excursion
(max. 180°); if the target and the previous dimension are equal, the axis remains
stationary; if the difference is 180° the direction is conventionally set to avoid
passing through the origin; if the target is 180° and the previous dimension is 0°, or
vice versa, the axis passes through 90°;

• To force the direction of travel add or subtract 360°;

• To rotate the axis several times, add or subtract 360° X (number of full turns + 1).
To rotate the axis once, simply add or subtract 720° to the current position of the
axis.

Example
G0 X100 Y100 (rapid feed to point P1(X100,Y100))
Y200 (rapid feed to point P2(X100,Y200))

G0 A120.000
G0 A120.000 (* axis stationary at 120 *)
G0 A120.000
G0 A200.000 (* advance axis to 200, through 80 *)
G0 A120.000
G0 A40.000 (* reverse axis to 40, through 80 *)
G0 A40.000
G0 A320.000 (* reverse axis to 320, through 80 *)
G0 A320.000

See also Feed command, Linear interpolation.

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.15

2.3.3 Linear interpolation

Syntax G1

Type of function Modal, mutually exclusive with G0, G2, G3, G33, G63

Description Linear interpolation mode enables travel to the target point (with the fine tolerance
threshold) via a linear trajectory at the speed set with parameter F.
Whenever rotary axes are involved in the interpolation, as these cannot follow a linear
trajectory, they are set to start and terminate their travel at the same tme as the linear
axes.
Axes with finite travel are handled without modular arithmetic.
For modular axes (infinite travel) the following considerations apply:

• the target dimension (modulo 360) determines the angle to be reached;

• the direction to travel is determined by the relative values of the original and target
dimensions, including sign; if the target and the previous dimension are equal, the
axis remains stationary;

• To rotate the axis several times, add or subtract 360° X (number of full turns). To
rotate the axis once, simply add or subtract 360° to the current position of the axis.

Example
G0 X100 Y100 (rapid feed to point P1(X100,Y100))
G1 X200 Y200 F1000 (feed to point P2(X100,Y200) with linear
travel at 1000 mm/min)

G0 A120.000
G1 A120.000 (* axis stationary at 120 *)
G1 A200.000 (* advance axis to 200 *)
G0 A120.000
G1 A-160.000 (* reverse axis to 200 *)
G0 A120.000
G1 A60.000 (* reverse axis to 60 *)
G0 A120.000
G1 A420.000 (* advance axis to 60 *)

G0 A0.000
G0 A120.000
G1 A480.000 (* rotate axis forwards one full turn and on to
120 *)
G0 A120.000

See also Feed command, Rapid feed, Circular interpolation, Setting the feed rate.

Standard Programming DP

91752.DP.1.GB Esa/Gv2.16

2.3.4 Circular interpolation

Syntax G2 (clockwise)
G3 (counterclockwise)

Type of function Modal, mutually exclusive with G0, G1, G33, G63

Description Circular interpolation drives the axes to the target point (within the fine tolerance
threshold) through a circular arc in the working plane at the speed set with parameter F.
The arc is defined by the target point and the centre coordinates (codes I, J and K) or by
the radius (code R).
The centre coordinates can be specified either absolutely or incrementally relative to the
starting point of the arc, depending on which mode is selected.
If the target point is set outside the plane of the arc, the actual path followed by the axes
becomes helical.
When programming the radius, an arc of angle greater than 180°° must be specified with
a negative sign.
G2-G3 cannot be used with more than 4 axes currently selected as feed axes.

Example
G0 X0.0 Y0.0 (rapid feed to point P1(X0,Y0))
G2 F100 X100 Y0 I50 J0 (Clockwise circular arc to point
P2(X100, Y0) with centre C(X50, Y0))
G3 X0 Y0 R50 (Rcircular arc as above but
 counterclockwise and defining the
 radius (50) rather than the centre)
G2 X100 Y0 Z100 I50 J0 (Same arc, with change of plane
 (helical))

R

-R

G3

G3
P1

P2

X

Y

Figure 2.4 - Circular interpolation with positive/negative radius

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.17

See also Interpolation parameters, Feed command,Selecting the work plane.

2.3.5 Thread-cutting

Syntax G33 Zpos Kpitch (cylindrical)
G33 Zpos Xpos Kpitch (conical)

Type of function Modal, mutually exclusive with G0, G1, G2, G3, G63

Description Cuts a cylindrical, conical or planar thread from the current position to the programmed
target point, with the programmed pitch.
Not possible if one of the following functions is enabled: G95, G96.
During thread-cutting the spindle must be fitted with a position transducer.
The feed speed of each axis depends on the spindle speed (set by parameter S) and the
thread pitch.
The spindle's starting angle for thread-cutting is always zero.

Zpos final longitudinal point

Kpitch constant thread pitch

Xpos final radial point

Example
S200 M3 (start spindle)
G0 X20 Z100 (approach to workpiece)
G33 Z70 K2 (cylindrical thread depth 30 mm with pitch
2)
G0 X30 (withdraw from piece)

See also Interpolations parameters,Tapping.

Standard Programming DP

91752.DP.1.GB Esa/Gv2.18

x

z

K

x

z

K

X

Z

Z

Figure 2.5 - Geometric thread-cutting parameters G33

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.19

2.3.6 Tapping

Syntax G63 Zpos Kpitch

Type of function Modal, mutually exclusive with G0, G1, G2, G3, G33

Description Executes rigid tapping from current to programmed target point, with programmed pitch.
During tapping the spindle must be fitted with a position transducer.
The spindle speed is set by the parameter S. The longitudinal feed speed depends on the
spindle speed and the tapping pitch.
If the pitch is positive the spindle rotates clockwise for increasing Z and
counterclockwise for decreasing Z (righthand thread); vice versa for negative pitch.

Zpos end point

Kpitch

Example
M19 (orient spindle)
S200 (select spindle speed)
G0 Z100 (approach to workpiece)
G63 Z70 K-2 (righthand tapping depth 30 mm with pitch 2)
G4 F0.2 (halt for 2 tenths)
G63 Z100 K-2 S1000(extract tool)
G0 Z200 (withdraw from workpiece)

See also Interpolation parameters,Thread cutting.

Standard Programming DP

91752.DP.1.GB Esa/Gv2.20

2.3.7 Timed halt

Syntax G4 Ftime

Type of function Self-cancelling, mutually exclusive with G0, G1, G2, G3, G33, G63

Description The timed halt function stops the machine for the time set in the parameter F.

Ftime [sec]

Example
G4 F2.5 (halt for 2.5 seconds)
X100 Y200 (feed to point P2(X100,Y200))

See also Positioned halt.

2.3.8 Positioned halt

Syntax G9

Type of function Self-cancelling

Description The positioned halt function forces stopping at the programmed point within the fine
tolerance threshold (set in the machine parameters) in rapid feed mode, in which the
rough tolerance would normally apply to allow passage to the next block.

Example
G0 G9 X100 Y200 (feed to point P1(X100,Y200) with fine
tolerance)

See also Rapid feed,Timed halt.

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.21

2.4 Special interpolations

2.4.1 Auxiliary axis interpolations

Descriptin Interpolations can be programmed using the auxiliary axes UVW just as with the
cartesian axes XYZ (see G0, G1, G2, G3, G33, G63, G133).
Just as with the cartesian parameters, we can also apply tool radius and length
corrections, machining allowance (SVR/SVL), inverse feed programming (G93) and
selection of the system of reference (G58-G59).

To decide which axes are involved in the tool radius correction, for example, the system
first checks for the cartesian axes of the selected plane and if they are not enabled
checks for the corresponding auxiliary axes, finally checking the rotary axes.
If plane G17 is active, for example, and the axes YUVWA are currently enabled (that is,
they are in the current axis template, not disabled by CON[]=0), U and Y will be
selected for tool radius correction.
They are selected with the following priority:
cartesian axes XYZ => auxiliary axes UVW => polar axes ABC.

Example
F100
D1
CON[A] = 0
G16 U Y Z+
G0 U0 Y0 Z0
G2 U200 Z30 R100
G0 U0 Y0 Z0
D0
G0 U0 Y0 Z0
D1
G16 W X Y+
G0 W0 X0 Y0
G2 W200 X0 Y30 R100
G0 W0 X0 Y0

2.4.2 Cylindrical programming

Description It is possible to interpolate with the linear axes XYZ UVW and at the same time with the
polar axes ABC (v. G0, G1, G2, G3).

When programming circular interpolations with one linear and one polar axis, we have
adopted an approach of the type "mm = degrees": the polar coordinates are programmed
in degrees, but the CNC interprets them as mm. In other words, although the polar
coordinates are degrees, they are also mm in practice if the operator has calculated the
position correctly in degrees (that is multiplying the position in mm by 57.299 and
dividing by the radius of the cylinder).
To avoid rejection of the machining operations by the CNC (which checks whether the
parameters specified with G02 actually result in a circle) the coordinates must always be
in degrees (which the slave interprets as mm) compatible with the mm specification.
This approach means that, if the numerical information is correct but the operator has
not correctly converted from degrees to mm, the interpolation arc is a segment of an
ellipse.

Standard Programming DP

91752.DP.1.GB Esa/Gv2.22

Furthermore, the radius of the cylinder can be unknown, and therefore a special mode is
not required for cylindrical programming: the ABC axes can be interpolated as if they
are cartesian. Note that the radius of the cylinder must be known to the operator doing
the calculations, however.
Finally, this mode conforms to the modular arithmetic (mod 360) of the cylinder,
inasmuch as the polar coordinates are programmed in degrees.

Example
F1000
D1G16 B Y X+
G42
G01 Y0 B0
G01 Y120
 B30
G93 F2 G02 Y90 B60 R30
G01 Y70
G03 Y60 B70 R10
G01 B150
G03 Y70 B190 R75
G01 Y110 B230
G02 Y120 B270 R75
G01 B360
G40
G58 Y200
G41
G94 F1000
G01 Y0 B0
G01 Y120
 B30
G93 F2 G02 Y90 B60 R30
G94 F1000
G01 Y70
G03 Y60 B70 R10
G01 B150
G03 Y70 B190 R75
G01 Y110 B230
G02 Y120 B270 R75
G01 B360
G40

See also Programming the feed, Feed command, Rapid feed, Linear interpolation,Circular
interpolation.

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.23

2.5 Spindle orientation

2.5.1 M19: Spindle orientation

Syntax M19 Sangle

Type of function Self-cancelling

Description Orients the spindle. The angle of orientation of the spindle is set with the S parameter or,
if this is not available, is defined in the machine parameters.
The spindle must be fitted with a position transducer.
The speed of rotation for spindle orientation is defined in the parameters.
This is a closed loop positioning command, which corresponds to the positioning of a
polar axis.

Sangle

Example
M19 S45(orient the spindle at 45°)

See also On the fly spindle orientation.

Standard Programming DP

91752.DP.1.GB Esa/Gv2.24

2.5.2 On-the-fly spindle orientation

Syntax M19 Sangle

Description On-the-fly orientation enables switching from a closed to an open loop. If the spindle is
rotating in an open loop it can be oriented without having to first stop it.
Phase 1) the PLC zeroes the rotation bit
Phase 2) the spindle decelerates to Vdec
Phase 3) the process assumes the programmed acceleration and decelerates to Vstop.
Phase 4) Vstop is maintained until the position error generates the current output
voltage.
Phase 5) the loop closes and positioning occurs.
*) In the current version Vstop = Vdec (SP_VELM19) so the acceleration change in
Phase 3 does not occur.

Vdac

T

Vmax

Vdec

Vstop

Close ring

Figure 2.6 - Spindle speed control during on-the-fly orientation

Example S1500 M3 ;Open loop rotation
M19 S45.0 ;Closed loop orientation on-the-fly orientation

S1500 M3 ;Open loop rotation
M5 ;Stop spindle
M19 S45.0 ;Orient spindle Preceding mode

See also M19: spindle orientation.

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.25

2.6 Programming axis and spindle speed

2.6.1 Setting the feed rate

Syntax Fspeed

Type of function Modal

Description The F parameter sets the interpolation feed rate.
The feed rate is normally expressed in mm/min, but in the case of polar axes the rate is
expressed in degrees/min. There is also a mode (G95) in which the feed rate is expressed
in mm/revs.
If all axes are cartesian the feed rate for the interpolation is expressed in mm/min (in
G94 mode).

For a single polar axis the feed rate is expressed in degrees/min (in G94 mode).

If all axes are polar the unit is still degrees/min (in G94 mode) bearing in mind that the
feed rate applies to a n-dimensional vector whose components are the angles of travel in
the various polar axes.

If we want the two polar axes A and B to travel through 30° (∆A) and 40° (∆B)
respectively in 0.20min (t), we first calculate the modulus of the vector (in this case two
dimensional) (S, angle of travel in degrees):

S ∆ A
2

∆ B
2

30
2

40
2

50

then we divide by the time (t) to obtain the angular speed (V) in degrees/min:

V
S

t

50

0.20
250.0

If both cartesian and polar axes are being used together, the cartesian coordinates are
programmed in mm/min (in G94 mode).
The polar axes interpolate linearly over the same time of travel required by the cartesian
coordinates.

This type of programming is typical of applications which require:

• a tool tangential to the yaw axis (e.g.: non-contour glass cutting with head tangential
to plane);

• a polar axis whose rate is not predominant (i.e. negligible relative to the cartesian
feed rate).

In the following situations:

• the travel of the X and Y axes is zero or too small to allow modulation of the polar
axis feed rate with the required precision;

Standard Programming DP

91752.DP.1.GB Esa/Gv2.26

• the n-dimensional vectorial speed must be computed separately, as the components
are not commensurable (linear and angular travel); using the option "programming
the feed rate as inverse feed" G93.

Examples
G0 X100 Y100 (feed to point P1(X100,Y100))
G1 Y200 F500 (linear to point P2(X100,Y200) with feed rate
500 mm/min)

G00 X0.000 Y0.000
G01 X30.000 Y40.000 F25.0

G00 A0.000 (*** ONE SINGLE POLAR AXIS ***)
G01 A30.000 F3000 (polar axis feed rate 3000 degrees/min)

G00 A0.000 B0.000 (*** SEVERAL POLAR AXES ***)
G01 A30.000 B40.000 F250.0 (see example on previous page)

G00 X0.000 Y0.000 A0.000 (*** COMBINED CARTESIAN AND POLAR
AXES ***)
G01 X30.000 Y40.000 A20.000 F25.0 (feed rate in mm/min)

G00 A0.000 B0.000 (*** Inverse feed ***)
G93 F250.0 G01 A30.000 B40.000 (positioning in 1/250 sec)

See also Linear interpolation, Inverse feed, Timed halt.

2.6.2 Continuous feed mode

Syntax G64 (enable)
G61 (disable)

Type of function Modal, disabled by default

Description In continuous feed mode the system passes from one block to the next without stopping
the axes.
There are, however, some commands which interrupt the continuous cycle and stop the
axes at the end of the block, such as G4, G9, M and T.
Disabling continuous feed implies stopping the axes at the end of the block which
contains the command G61 itself.

Example
G0 X100 Y100 (feed to point P1(X100,Y100))
G1 G64 Y200 F500 (linear to point P2(X100,Y200) no halt)
G2 G61 X200 R50 (circular arc to point P3(X200, Y200) with
halt)

See also Setting the feed rate,Continuus feed mode with speed look ahead.

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.27

2.6.3 Continuous feed mode with speed look-ahead

Description The machine parameters allow enabling speed look-ahead
[Channel parametersàOption: Speed Look Ahead].

If speed look-ahead is enabled in continuous feed mode the speed changes continuously
to meet that of the next section, i.e.:

Vout[K] = Vmax[K+1]

The approach to the piece is usually determined by a G0 (positioning), while the actual
machining is carried out by interpolation, G1,G2,G3. In continuous feed mode the
transition from one feed rate to another sometimes has undesired effects in the
machining of the piece. Enabling speed look-ahead makes it possible to anticipate the
transition and thus allows smooth machining of the piece..

Vdac

TG1G0

VG0

VG1

 speed look ahead
disabled

 speed look ahead
enabled

Workpiece

Figure 2.7 - Feed rate transition with/without look-ahead

Example
;LOOK AHEAD ENABLED
 ;******* REPORT *******
F10000 G64
G0 Y500 X100 ;Vmaxà833333 Voutà166666
G1 X1000 ;Vmaxà166666 Voutà166666
G61
G1 X1000 ;Vmaxà166666 Voutà0

;LOOK AHEAD DISABLED
 ;******* REPORT *******
F10000 G64

Standard Programming DP

91752.DP.1.GB Esa/Gv2.28

G0 Y500 X100 ;Vmaxà833333 Voutà833333
G1 X1000 ;Vmaxà166666 Voutà166666
G61
G1 X1000 ;Vmaxà166666 Voutà0

See also Continous feed mode.

2.6.4 Selecting the feed mode

Syntax G94 (feed rate in mm/min)
G95 (feed rate in mm/rev)

Type of function Modal, in mm/min by default

Description The feed rate is defined by the parameter F and can be absolute (in mm/min) or relative
to the spindle rotation speed (in mm/rev).
If the spindle is not fitted with a position transducer, the nominal rotational speed is used
in mm/rev mode.

Using G95, which allows interpretation of the F values as mm/rev, subordinates the rate
of the linear axes to the speed of the spindle itself. If the spindle speed increases, so does
that of the linear axes.

The vectorial feed rate is determined by the following formula

[]V S Frpm= ∗ mm
min

where
 Srpm is the speed of the spindle
 F advance per rev set by G95

Example
G0 X100 Y100 (feed to point P1(X100,Y100))
S1000 M3 (start spindle)
G95 F2.1 (enable feed in mm/rev)
G1 Y200 (linear to point P2(X100,Y200) with feed rate
bound to spindle speed à
 1000 rpm *2.1mm/rev = 2100 mm/min)

See also Settinf the feed rate,Setting the spindle rotation mode.

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.29

2.6.5 Selecting the spindle rotation mode

Syntax Sspeed

Type of function Modal

Description Parameter S sets the speed of rotation of the spindle.
The speed is usually expressed in rpm, but there is a mode in which the speed is
expressed as cutting speed in m/min (G96).

Speed speed of rotation, rpm or m/min

Example
S500 M3 (start spindle clockwise at 500 rpm)

See also Setting the spindle rotation mode..

2.6.6 Setting the spindle rotation mode

Syntax G96 (constant cutting speed)
G97 (constant rpm)

Type of function Modal, constant rpm by default (G97)

Description This function keeps the cutting speed constant, thus optimising the machining quality.
The speed of rotation of the spindle is set with the parameter S and can be absolute (in
rpm) or relative to the position of the linear axis with which it is associated, for example
X (cutting speed in m/min).
This function is characteristic of lathes, in which the position of the X axis determines
the diameter of the piece at the point of machining.

The speed of the spindle cannot exceed a maximum.
When constant cutting speed mode is disabled the speed of rotation of the spindle stays
constant at the most recent value.

Selecting G96 forces interpretation of S as m/min, and to keep the cutting speed constant
the spindle speed must be modulated by the radius of the contour, for example, if the
radius decreases, the spindle speed increases.

 V rpm
S

R mMAND
G

m

[]
[]

[]
min

= 96

2π

Standard Programming DP

91752.DP.1.GB Esa/Gv2.30

where
 R is the position on the linear axis,
 SG96 is the constant cutting speed set with G96

From the above relation we can see that the speed of the spindle is inversely
proportional to the position R.

Spindle speed
up

Spindle speed
down

Figure 2.8 - G96 variation of the speed according to the turning radius

This mode can be combined with G95 which programs F in mm/rev, so as to ensure
covering constant areas in constant time.

S'rpm

V

Srpm

V'

Y
A'

A

Figure 2.9 - G95-G96 Constant area machining

From the figure it is evident that with constant cutting speed the following relation holds

 Srpm > S'rpm

If we program with G95, the linear feed rate V is proportional to S so that

 V> V

In this case, in a certain interval of time ∆t, the machined area is given by:

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.31

A=2πr × V∆t = 2πr × f(Srpm)∆t = 2πr × f(g(1/r))∆t
A'=2πR × V'∆t = 2πR × f(S'rpm)∆t =2πR × f(g(1/R))∆t

where f(S)=K × S and S= g(1/r)= K' × 1/r

A=A'= 2π × const

Example
(* enable constant cutting speed with G96)

G0 X100 Y100 (*X radius)
S500 M3 (*spindle at 500 rpm)
G96 S100 (*constant cutting speed 100 m/min
 spindle:159 rpm à X=100)
G4 F1
G1 X50 Y50 F1000 (*spindle at 318 rpm à X=50)
G97
G4 F1
S500 (*spindle at 500 rpm)
G4 F1
M5 (*stop spindle)

(* enable G95 and G96 simultaneously)

G0 X100 Y100
S500 M3 (*spindle at 500 rpm)
G96 S100 (*spindle at 159 rpm)
G4 F5
G95 F1 (*temporary 159 mm/min --> Vmax=2650 Hz)
G1 X50 (*spindle at 318 rpm speed 318 mm/min
 Vmax=5300Hz)
G1 Y50 (*speed 318 mm/min --> Vmax=5300Hz)
G97 G94
G4 F1
S500 (*spindle at 500 rpm)
G4 F1
M5
M30

See also Selecting the spindle rotation mode.

Standard Programming DP

91752.DP.1.GB Esa/Gv2.32

2.6.7 Inverse feed

Syntax
G93 F < inverse_feed >

Type of function Modal, exclusive with G94 and G95, disabled when the CNC is switched on.

Description Where inverse_feed, expressed in min 1
, is the ratio:

F
V
L

=

V is a speed expressed in any units over time.
L is the length of the section in the same units.

from which the units for the parameter F are:

u

u
min

min
min







= = −1 1

Selects, for the current block, the speed as the inverse (or reciprocal) of the time.

Applications "Inverse feed" is enabled with G93, for instance:

• when programming both polar and linear axes in the same block and the travel of
the linear axes is zero or too small for the polar axes to be modulated with the
required accuracy;

• when the velocity must be programmed externally as an n-dimensional vector with
incommensurable components (e.g.: spaces and angles).

Example A is the yaw axis of the spindle which results in a large displacement of the tool point in
contact with the piece even with small angular displacements. To program an operation
which involves axes X, Y, Z and A, with a suitable feed rate. The travel of the linear
axes is extremely limited so that the physical speed of the fourth axis cannot be
accurately regulated(and hence neither can the speed of the tool point) using normal
mm/min programming. This type of feed can be extracted from a CAD/CAM program,
using calculations which take into consideration the tool point path and the axis
movements.
In this case we use inverse feed programming (G93).

The axes must move from:

X0.000 Y0.000 Z0.000 A0.000

to:

X0.010 Y0.010 Z0.023 A100.000

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.33

interpolating linearly.

We know the path of the tool point during interpolation (different from the XYZ axis
paths):

400 mm

We know the linear feed rate of the tool point during the interpolation:

1600 mm/min

We program G93 with the speed:

F = =
1600
400

4

(the reciprocal of the feed time, 0.25min)

We thus obtain:
G00 X0.000 Y0.000 Z0.000 A0.000
G93 F4 G01 X0.010 Y0.010 Z0.023 A100.000 (positioning in ¼
of a second)
G94 F1000 (resets the speed to mm/min)Auxiliary functions

Standard Programming DP

91752.DP.1.GB Esa/Gv2.34

2.7 Polar axes programming

2.7.1 Polar axes with travel limitation

The targets expressed are absolute and range from the minimum target to the maximum
one, inclusive. In relation to the distance covered, the behaviour is the same as that for a
Cartesian axis.

e.g.:

G0 C-90.000
G0 C270.000 ; The axis moves forwards through 360
degrees

G0 C315.000
G1 F5000 C45.000 ; The axis moves backwards through 270
degrees

G0 C45.000
G1 F3000 C315.000 ; The axis moves forwards through 270
degrees

The behaviour described can be modified by means of certain operators that allow the
direction and rpm rate of the polar axis to be conditioned. See the Selection of the
direction and rpm rate section. Note, in that section, how the behaviour described is the
same as that of the AC operator.

2.7.2 Round axes

Operation in the rapid
mode

Depending on the counting method, the programmed target determines the position to
reach and not the absolute target of the axis. If the target is beyond the [0..mod) range,
it is brought back within that range.

The direction is therefore determined so as to reach the programmed position via the
shortest possible route. If the programmed position is the same as the one in which the
axis actually is, the axis remains at a standstill.

e.g.:

G0 C-90.000
G0 C270.000 ;The axis remains at a standstill

G0 C315.000
G0 C45.000 ; The axis moves forwards through 90 degrees

G0 C45.000
G0 C315.000 ; The axis moves backwards through 90 degrees

The behaviour described can be modified by means of certain operators that allow the
direction and rpm rate of the polar axis to be conditioned. See the Selection of the

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.35

direction and rpm rate section. Note, in that section, how the behaviour described is the
same as that of the DC operator.

Operation in the feed
mode

If a target is programmed within the [0..mod) range, the axis will reach the required
position without passing via 0. E.g.:
G0 C-90.000
G1 F5000 C270.000 ; The axis remains at a standstill

G0 C315.000
G1 F5000 C45.000 ; The axis moves backwards through 270
degrees

G0 C45.000
G1 F5000 C315.000 ; The axis moves forwards through 270
degrees

A target beyond the [0..mod) range can also be programmed without any limitations. In
that case, the distance to cover is determined by considering the programmed target and
the current position, only this latter within the [0..mod) range. After the block has been
executed, the programmed target will be brought back within the [0..mod) range and will
form the new current position. This means that if targets beyond the [0..mod) range are
programmed for a round axis, they will always result in movement of the axis, regardless
of the current position.
E.g.:
G0 C45.000
G1 F5000 C405.000 ; The axis moves forwards through 360
degrees

G1 C405.000 ; The axis moves again forwards through 360
degrees

G1 C45.000 ; The axis remains at a standstill
G1 C-315.000 ; The axis moves backwards through 360
degrees

G1 C-315.000 ; The axis moves again backwards through 360
degrees

G1 C45.000 ; The axis remains at a standstill

Standard Programming DP

91752.DP.1.GB Esa/Gv2.36

2.7.3 Selection of the direction and rpm rate

Certain operators are available for conditioning the direction and rpm rate of the polar
axis. These operators are implemented like a series of functions that produce values
which must be assigned to the address of the polar axes for which conditioned
movement is required. For example:
G0 C=DC(45.000)
G1 F5000 C=ACP(1,45.000)

These operators have the same effect on blocks executed in the rapid and feed modes.

Incremental
positioning (IC)

<polar axis>=IC(<Incremental target>)

Es.:

C=IC(-25.000)

The axis is moved so as to cover the distance defined by <incremental_target> in the
positive or negative direction, depending on the sign. The target reached will be given
by the algebraic sum of the current target and <incremental_target>, brought back
within the [0..mod) range in the case of a round axis.

Absolute positioning
(AC)

<polar_axis>=AC(<absolute_target>)

E.g.:
C=AC(45.000)

In the case of axis with travel limitation, <absolute target>, it is expressed within the
minimum target and maximum target range, inclusive. In relation to the distance
covered, the behaviour is the same as that for a Cartesian axis. For example:

C=AC(-90.000)
C=AC(270.000) ; The axis moves forwards through 360
degrees

C=AC(315.000)
C=AC(45.000) ; The axis moves backwards through 270
degrees

C=AC(45.000)
C=AC(315.000) ; The axis moves forwards through 360
degrees

In the case of a round axis, and if an <absolute_target> value is programmed within the
[0..mod) range, the axis will reach the required position without passing via 0. E.g.:

C=AC(-90.000)
C=AC(270.000) ; The axis remains at a standstill

C=AC(315.000)
C=AC(45.000) ; The axis moves backwards through 270
degrees

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.37

C=AC(45.000)
C=AC(315.000) ; The axis moves forwards through 270
degrees

Again in the case of a round axis, and <absolute_target> value can also be programmed
beyond the [0..mod) range without any limitations. In this case, the distance to cover is
determined considering the <absolute_target> and the current position, only this latter
within the [0..mod) range. After the block has been executed, the <absolute_target>
will be brought back within the [0..mod) range and will form the new current position.
This means that programming an AC function with <absolute_target> values beyond
the [0..mod) range for a round axis will always result in movement of this latter,
regardless of the current position.
E.g.:
C=AC(45.000)
C=AC(405.000) ; The axis moves forwards through 360 degrees

C=AC(405.000) ; The axis moves again forwards through 360
degrees

C=AC(45.000) ; The axis remains at a standstill
C=AC(-315.000); The axis moves backwards through 360
degrees

C=AC(-315.000); The axis moves again backwards through 360
degrees

C=AC(45.000) ; The axis remains at a standstill

Absolute positioning
with the least
distance (DC)

<polar_axis>=DC(<absolute_position>)

E.g.:

C=DC(45.000)

Depending on the counting module, <absolute_position> determines the position to
reach and not the absolute target of the axis. If <absolute_position> is beyond the
[0..mod) range, it will be brought back within this range.

The direction is therefore determined so as to reach the programmed position via the
shortest possible route. If the programmed position is the same as the one in which the
axis actually is, the axis remains at a standstill.

E.g.:
C=DC(-90.000)
C=DC(270.000) ; the axis remains at a standstill

C=DC(315.000)
C=DC(45.000) ; The axis moves forwards through 90 degrees

C=DC(45.000)
C=DC(315.000) ; The axis moves again backwards through 90
degrees

In the case of axis with travel limitation (module 360):

Standard Programming DP

91752.DP.1.GB Esa/Gv2.38

C=AC(765.000) ; The position of the axis will be 45 degrees
(765 MOD 360)
C=DC(315.000) ; The axis moves forwards through 90 degrees
and reaches the position of 675

Absolute positioning
in the positive
direction (ACP)

<polar axis>=ACP(<absolute_position>)
<polar axis>=ACP(<n_rev>,<absolute_position>)

E.g.:

C=ACP(45.000)
C=ACP(2,45.000)

Depending on the counting module, <absolute_position> determines the position to
reach and not the absolute target of the axis. If <absolute_position> is beyond the
[0..mod) range, it will be brought back within this range.

The required position is reached by moving the axis in the positive direction. If the
programmed position is the same as the one in which the axis actually is, the axis
remains at a standstill.
E.g.:

C=DC(-90.000)
C=DC(270.000) ; the axis remains at a standstill

C=DC(315.000)
C=ACP(45.000) ; The axis moves forwards through 90 degrees

C=DC(45.000)
C=ACP(315.000) ; The axis moves forwards through 270
degrees

In the case of axis with travel limitation (module 360):

C=AC(765.000) ; The position of the axis will be 45
degrees(765 MOD 360)

C=ACP(315.000); The axis moves forwards through 270 degrees
and reaches the position of 1035

An additional number of revolutions can be expressed <n_rev>. If programmed, the
<absolute_position> reached will be the same, but the required number of revolutions
will be added to the distance normally covered to reach it in the positive direction.

C=DC(-90.000)
C=ACP(1,270.000) ; The axis moves forwards through 360
degrees

C=DC(315.000)
C=ACP(1,45.000) ; The axis moves forwards through 450
degrees

C=DC(45.000)
C=ACP(1,315.000) ; The axis moves forwards through 630
degrees

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.39

In the case of axis with travel limitation (module 360):

C=AC(765.000) ; The position of the axis will be 45
degrees(765 MOD 360)

C=ACP(1,315.000) ; The axis moves forwards through 630
degrees and reaches the position of 1395

Absolute positioning
in the negative
direction (ACN)

<polar axis>=ACP(<absolute_position>)
<polar axis>=ACP(<n_rev>,<absolute_position>)

E.g.:

C=ACN(45.000)
C=ACN(2,45.000)

Depending on the counting module, <absolute_position> determines the position to
reach and not the absolute target of the axis. If <absolute_position> is beyond the
[0..mod) range, it will be brought back within this range.

The required position is reached by moving the axis in the positive direction. If the
programmed position is the same as the one in which the axis actually is, the axis
remains at a standstill.
E.g.:

C=DC(-90.000)
C=DC(270.000) ; the axis remains at a standstill

C=DC(315.000)
C=ACN(45.000) ; The axis moves backwards through 270
degrees

C=DC(45.000)
C=ACP(315.000) ; The axis moves backwards through 90
degrees

In the case of axis with travel limitation (module 360):

C=AC(765.000) ; The position of the axis will be 45
degrees(765 MOD 360)

C=ACN(315.000); The axis moves forwards through 90 degrees
and reaches the position of 675

An additional number of revolutions can be expressed <n_rev>. If programmed, the
<absolute_position> reached will be the same, but the required number of revolutions
will be added to the distance normally covered to reach it in the positive direction.

C=DC(-90.000)
C=ACN(1,270.000) ; The axis moves backwards through 360
degrees

C=DC(315.000)
C=ACN(1,45.000) ; The axis moves backwards through 630
degrees

C=DC(45.000)

Standard Programming DP

91752.DP.1.GB Esa/Gv2.40

C=ACP(1,315.000) ; The axis moves backwards through 450
degrees

In the case of axis with travel limitation (module 360):

C=AC(765.000) ; The position of the axis will be 45
degrees(765 MOD 360)

C=ACN(1,315.000) ; The axis moves forwards through 450
degrees and reaches the position of 315

2.7.4 Speed programming in the presence of polar axes

Interpolation with one
or more Cartesian
axes and no polar
axis

The speed is programmed on the trajectory described by the Cartesian axes in mm/min
(in the G94 mode).

E.g.:

G00 X0.000 Y0.000
G01 X30.000 Y40.000 F5000

Interpolation with one
or more polar axes
and noCartesian axis

Only polar axis The speed polar axis is programmed in mm/min (in the G94 mode).

Es.:

G00 C0.000
G01 C30.000 F3000

MORE polar axes
Programming is always carried out in degrees/min (in the G94 mode) considering,
however, that the speed acts on an n-dimensional vector whose components on the
various dimensions are the angles covered by the polar axes.
If two polar axes A and B must cover angles of 30° (∆A) and 40° (∆B), respectively,
taking 0.20min, (t), first calculate the first module of the vector, two-dimensional in this
case (S, angle covered in degrees):

• S ∆ A
2

∆ B
2

30
2

40
2

50

then, divide by the time (t) to obtain the angular velocity (V) in degrees/min:

•
V

S

t

50

0.20
250.0

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.41

Now program:

G00 C0.000 B0.000
G01 C30.000 B40.000 F250.0

Interpolation in the
presence of both
Cartesian and polar
axes

The speed is programmed on the trajectory described by the sole Cartesian axes in
mm/min (in the G94 mode).

The polar axes interpolate linearly in the same time taken by the Cartesian axes.

E.g.:

G00 X0.000 Y0.000 A0.000
G01 X30.000 Y40.000 C20.000 F2500

In certain situations, it may be more convenient to program the speed as inverse of time,
by means of the G93 mode. This sort of situation may occur when the component on the
Cartesian axes is extremely small and the speed of the polar axes must be accurately
modulated.

Programming the
speed as time
reciprocal

In the G93 mode, no distinctions are made between the types of axes in a block since the
reciprocal of the travel time of the block is expressed and not a linear/angular space per
unit of time.

Standard Programming DP

91752.DP.1.GB Esa/Gv2.42

2.8 Auxiliary Functions

2.8.1 Functions M and T

M functions The M auxiliary functions (miscellaneous) are generally plant-specific and are defined
by the machine manufacturer, (except for M2, M19 and M30).
When setting the M functions the following standards must be adhered to:

Function Meaning

M0 Unconditional halt

M1 Optional halt

M2 End of program (not redefinable)

M3 Clockwise spindle rotation

M4 Counterclockwise spindle rotation

M5 Spindle halt

M6 Tool change

M7 Coolant 1 ON

M8 Coolant 2 ON

M9 Coolant OFF

M10 Lock

M11 Unlock

M19 Spindle orientation (not redefinable)

M30 End of program (not redefinable)

M40 Automatic range change

M41 Select range 1

M42 Select range 2

M43 Select range 3

M44 Select range 4

M48 Reset override

M49 Override off

M60 Change piece

The M functions ensure synchronisation of the channel with the rest of the system, via
data interchange with the PLC.
The machine parameters allow selection of the control mode (Enable Overlapped M)
which enables reduction of deadtime due to waiting for synchronisation signals.

T functions The T auxiliary functions specify and setup the tool to be fitted with the next M6
command.

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.43

The T function specifies the tool number, but has no bearing on tool compensation
which is handled by the D function.

Order of execution The order of execution of commands in a given block is as follows:

• T functions

• S functions

• M functions

• Feed

• Timing

A block may contain only one command of each type, except for the M functions, of
which there may be up to 3 in one block.

Standard Programming DP

91752.DP.1.GB Esa/Gv2.44

2.9 Tool compensation

2.9.1 Tool length correction

Tool corrector table The D function enables selection of the tool corrector, DD disables tool compensation.
The CNC contains a table which the operator can access, in which for every corrector a
set of data can be specified which defines the mode and properties of the tool
compensation. The 0 element of the table is not available. for example, if 10 tools are
defined in the defcn, the ones available are those from 1 to 9.

The command Dxx acquires the correction data for the tool and automatically enables
the length correction along the axis orthogonal to the machining operation. The tool
length is added to the position along the specified axis.
Note: before the Dxx function is used, it is obligatory to define the versors for both the
specified machining plane and the tool In the simplest case, where a machining
operation takes place on plane XY (G17) using a tool that works perpendicularly to the
plane along Z axis, it is always necessary to set the following versors:

EI0 EJ0 EK1 Versor for the machining plane

EP0 EQ0 ER1 Versor for the tool

See also Selecting the work plane, Tool radius compensation.

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.45

2.9.2 Tool radius compensation

Syntax G40 (disables radius compensation)
G41 (enables radius compensation to the left of the tool path)
G42 (enables radius compensation to the right of the tool path)

Type of function Modal, disabled by default

Description Tool radius compensation enables contour milling on a plane with automatic
compensation of the tool's radius.
The value of the tool radius used to calculate the actual tool path is taken from the D
corrector for the tool.

Compensation is applied to the selected plane, hence by default on the XY plane(G17).

For correct tool radius compensation, proceed as follows:

• select the appropriate tool corrector Dxx;

• program G41or G42.

In active compensation mode:

• Each feed command must involve at least one of the two plane axes, otherwise the
compensation algorithm will return an error.

• The correction direction/milling plane cannot be modified without disabling the
compensation itself.

• Two consecutive rapid feeds cannot be programmed.

Two contiguous tool paths, each with radius compensation, can be connected in a
different way:

• if the two paths form a convex angle the two paths are connected by a circular arc,

• if the two paths form a concave angle the first path is continued until it intersects the
projection of the second.

G40, which deactivates the compensation function, takes effect from the start of the next
machining segment.
The following two figures show tool paths with G41 and G42 correction using a flat end
mill.

Standard Programming DP

91752.DP.1.GB Esa/Gv2.46

Y

X

Z

G41

Y

X

Z

G42

Figure 2.10 - G42 correction with flat end mill:

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.47

The following figure shows G42 correction for a lathed part,

G42

G18: ZX plan

X

Z

Clamp

Clamp

G2

G1

R

G1

G1

G1
G3

G1

Figure 2.11 -Lathe tool correction:

Standard Programming DP

91752.DP.1.GB Esa/Gv2.48

and in the following for a bored part:

G41

X

Z
G1

G1
G1G1

G1

G3
R

Figure 2.12 - Boring tool correction

DP Standard Programming

Esa/Gv 91752.DP.1.GB 2.49

programmed
course

G42

G41

programmed
course

G42

G41

programmed
course

G42

G41

Figure 2.13 - Tool compensation: programmed and corrected path

Interference check The tool correction algorithm recognises interference (or overcutting) on a linear or
circular arc segment, only if the direction of the path of the centre of the tool differs
from the programmed path by an angle between 90°° and 270°°.

Standard Programming DP

91752.DP.1.GB Esa/Gv2.50

For example, the following types of interference are recognised:

Tool

Opposite
directions

programmed
course

right
course

Tool

Opposite directions

programmed
course

right course

Figure 2.14 - Interference on linear and circular arc paths

Example G0 G41 X100 Y100 (feed to point P1(X100-tool radius,Y100))
G1 Y200 F500 (linear to point P2(X100-tool radius,Y200))
G2 G40 X200 R50 (arc to point P3(X200+tool radius, Y200))

See also Tool lenght correction.

END OF CHAPTER

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.1

3 Advanced Programming

3.1 Selecting Automation Language mode

Syntax MODE = AUTO (default)

Description This command selects the Esa-Gv Automation Language programming mode, with the
features listed below.
In this mode comments are preceded with a semicolon and the reserved ISO character
"%" is used to identify variable names. For the rest, Automation Language can be
considered an extension of the ISO language.

See also Standard Programming: Selecting ISO mode

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.2

3.2 Parametric Programming

Parametric programming allows variables to be used instead of numeric values or
strings. This makes programming flexible, guaranteeing that the code is clear.

Types of Variables Three types of variables are available:

• Global system variables: system or user variables accessible to both the CNC and
operator interface.

• Pre-defined variables: variables of the numeric type which can be addressed by
means of the Vaxx, VLxx, VGxx codes.

• Symbolic variables: variables whose names are defined by the user.

3.2.1 Global system variables

Syntax %nomeregistro
% nomeregistro.numerobit
Global variables defined in the shared memory can be accessed within the system (CNC,
UI, PLC).

Description To access the registers and structures in the shared memory, the % character must
precede the name of the register in question. If the name of the register is followed by
.numerobit, this means that only one bit is to be tested or modified.
The bit number must be compatible with the size of the register.

Type of register Tolerated range

BYTE from 0 to 7

WORD from 0 to 15

DWORD from 0 to 31

Example
%regtool[0].0=1 ;sets bit 0 of reg. %regtool[0]
%regtool[0].1=0 ;resets bit 1 of reg. %regtool[0]
%regtool[0].2=1 ;sets the bit 2 of reg. %regtool[0]

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.3

3.2.2 Pre-defined numeric variables

These are numeric variables pre-defined by the system. They can be accessed using
codes VA (automatic variables, VL (local variables) or VG (global variables) followed
by the number of the parameter.

All the numerical values in words can be referred to via parameters or expressions, with
the exception of the N codes.
Variables fall into the following categories:

VA xxx Automatic Only visible inside the program or subprogram

VL xxx Local Only visible inside its channel

VG xxx Global Visible to all channels

3.2.3 Assigning a variable pre-defined numeric variables

Syntax VA, VL, VG number = expression

Description The variable to the left of the = (assignment) sign is set to the value of the expression on
the right.

Example
G0 X0 Y0 ;Feed to point P1(X0, Y0)
VA1 = 100 VA2 = 200 ;Assigns two variables
G1 F1000 XVA1 YVA2 ;Linear feed to point P2(X100,Y200)

See also

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.4

3.2.4 Symbolic variables

The programmer can use personalized variables (the name and type are established by
the user) to which numeric values, strings or references can be assigned. Use of this type
of variable allows the code to be made more comprehensible. To use the symbolic
variables, the machine parameter [System->Configure Channel->Local variables for
Subroutine level] must be different from zero.

Variables of the following Type:

NUMERIC variables that contain both real numbers (numbers with the
decimal point) and integers.

The numbers are expressed in decimals, possibly with decimal
point and sign. Up to 9 whole figures are permitted. The
exponential notation is not permitted.

The expressions are processed in binary mode with a 14-figure
precision.

STRING variables that contain sequences of characters

RECORD variables that enable access to information about another object
which can be a symbolic variable, an input/output register, a user
register defined in defcn, etc.

3.2.5 Declaration of Symbolic Variables

Syntax DBL symb [=numeric value] [,symb [=numeric value]]
STR symb [= string] [,symb [= string]]
REC symb [= ^value] [,symb [= ^value]]

symb=nomevar[[elem number]]

Description Before the symbolic variables can be used to compile a PP, they must have been
previously declared.

DBL declares that the following symbols are numeric
STR declares that the following symbols are the string type
REC declares that the symbols are of the record type

The symbolic variables used must be declared at the beginning of the PP.

The name of a symbolic variable:

• consists of up to 32 alphanumerical characters;

• cannot correspond to a key word of the programming language;

• cannot begin with the ‘_ ‘ character.

The variables can be initialized during the declaration phase, i.e. their initial value can
be specified before they are used in the PP. If this value is not specified, the system
assumes a default value, coherent with the type of data item declared.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.5

TYPE OF DATA
ITEM

DEFAULT VALUE

numeric 0.0 zero

string "" empty string

record NULL no reference

Several symbols of the same type can be declared (and initialized if required) on the
same line by separating them with ‘,’ (comma).
Recognition of the variables discriminates between capitals/lower case letters (e.g.
Dimension is not the same as DIMENSION or dimension).

One-dimensional arrays can be declared, for example

DBL QuoteX[10] ; vector of 10 Numeric variables

This allows homogeneous data to be organized so as to enable access by the index.
Since a vector consists of n elements, it cannot be initialized during the declaration
phase.

Visibility of the
variables

Personalized variables can be defined within any programming module (main PP,
subroutine and fixed cycles).

The variables defined in the PP or its subroutine are activated and visible until its
conclusion, thus also during execution of a recalled subroutine.

Main Pp %1
DBL NRiga ; number of lines to execute
DBL NFORI, MAXY
...
...

NRiga = 20
JSR “boring” Executes a row of holes : boring

N10
IF (NRiga > 20) JMP 10
.....

RET

It is not possible for one or more variables declared on the same subroutine level to have
the same name, while this is allowed for variables defined at different subroutine levels.
The fact of having variables with the same name at different subroutine levels is
resolved in the following way:

• a variable is always visible within the module in which it is defined;

• a variable is visible in the modules recalled by the PP/Subroutine if these do not
declare a variable with the same name

Main % 1

DBL AUX1 = 35,
DBL AUX2 = 2

VL0 = AUX2 ; VL0 = 2

JSR 112 -> LEVEL1 : 112

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.6

VL2 = AUX2 ; VL2 = 10
VL3 = AUX1 ; VL3 = 35

JSR “SUB1” >LEVEL2 :SUB1
DBL AUX1 = 0

VL4 = AUX2 ; VL4 = 10
VL5 = AUX1 ; VL5 = 0

Example
DBL mezz, MIN=0, QuoteX[10]
REC PUNT[3] ;Array of 3 invalid pointers
REC POINTER = ^mezz
STR SUBROUTINE, NAME[3], SUB=”example.cfu

3.2.6 Allocation of Symbolic Variables

Syntax symb = compatible value
symb = nomevar[[elem number]]

Allocation of variables
of the record type

Following an allocation, the variable of the record type to the left of the allocation
symbol (=) contains the reference to the allocated symbol. Once a record variable has
been allocated, it can be used instead of the symbol to which it refers.
A variable of the record type can be allocated to another variable of the record type.

REC PUNT[10]
DBL Port, Limit switch

PUNT[0] = ^%C23 ;PUNT[0] is able to access
;logic register C23

PUNT[0] = 15.2 equals %C23=15.2

PUNT[1] = ^%QW3.1 ;PUNT[1] is able to access
; bit 1 of output register QW3

PUNT[2] = ^%IW8 ;PUNT[2] is able to access
;input register IW8

PUNT[3] = ^%subroutine[0].name
;PUNT[3] is able to access the
;structure in defcn subroutine[0].name

PUNT[4] = ^Port ;PUNT[4] is able to access the
;variable of the numeric type Port

PUNT[5] = ^VA20 ;PUNT[5] is able to access the
;pre-defined variable VA20

PUNT[6] = ^VG2;PUNT[5] is able to access the
;pre-defined variable VG2

PUNT[7] = ^VL13 ;PUNT[5] is able to access the
;pre-defined variable VL13

Use of record variables can be useful when variables in the shared memory must be
accessed frequently, as it speeds up the process.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.7

Allocation of variables
of the numeric type

The contents of the variable on the left of the allocation symbol (=) is set at the value of
the expression on the right.
Besides being allocated to a defined variable of the DBL type, a numeric value can also
be allocated to a record variable that refers to a symbol of the numeric type.

DBL QuotaX
REC PUNT

QuotaX = 100 ; QuotaX 100.0

PUNT = ^ QuotaX
PUNT = 300 ; equals QuotaX 300.0

Allocation of variables
of the string type

The contents of the variable on the left of the allocation symbol (=) is set at the value of
the string on the right.
Besides being allocated to a defined variable of the STR type, a string value can also be
allocated to a record variable that refers to a symbol of the string type.

STR SUB= “fora100.cfu”
REC PUNT

SUB = “1098.cfu” ; SUB “1098.cfu”

PUNT = ^ SUB
PUNT = “boring.cfu” ; equals SUB “boring.cfu”

3.2.7 Expressions

Expressions are created by combining operands and operators as in algebra.
Expressions can be used:

• To assign the resulting value to a variable, the expression appears on the right of the
“=” sign that follows the variable to which the calculation is allocated.

 E.g. MyVar = (VarA ** VarB) * SIN(VarC)/COS(VarD)

• As condition of an IF instruction; the expression is resolved and the result evaluated
by the IF instruction.

 Eg. IF(((VarA ** VarB) * SIN(VarC)/COS(VarD)) > 0) THEN

• In line with any ISO instruction.

 Eg. GO X(VarA ** VarB) Y(SIN(VarC)/COS(VarD))
 M(VarA-VarB)

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.8

Type of operand Syntax

constant number

pre-defined variable VA, VL, VG number

symbolic variable symbol

0x<number> Hexadecimal constant

%C <register number> I/O logic registers

%IW <register number> physical Input registers

%OW <register number> physical Output registers

glob. symbolic vector elem. %name_lowercase_var[el.num.]

global system var. %name_ lowercase_var

Structured glob. system var. %name_ lowercase_var.member

synchronous global system var. ?%name_ lowercase_var

operator

addition (+) expression+expression

subtraction (-) expression-expression

multiplication (*) expression*expression

division (/) expression/expression

negation (-) -expression

Raising expression ** expression

Function Syntax

square root SQRT(expression)

sine

cosine

tangent

arc sine

arc cosine

arc tangent

absolute value

rounding off

truncation

rounding off to the highest figure

addition (for dword)

subtraction (for dword)

multiplication (for dword)

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.9

Boolean operatorrs Description

<espress> AND <espress> and bit to bit operation

<espress> & <espress> and bit to bit operation

<espress> OR <espress> and bit to bit operation

<espress> | <espress> and bit to bit operation

<espress> && <espress> and logic operation (on entire word)

<espress> || <espress> operazton or logica ((on entire word)

SHR(<espress1>, <espress2>) shift right espress1 di espress2 bits

SHL(<espress1>, <espress2>) shift left espress1 di espress2 bits

MOD(<espress1>, <espress2>) resto divisione espress1 modulo espress2

Description Expressions are composed of constants and variables combined by the listed operators
and functions.
Operators are executed with algebraic priority, with optional parentheses to force
priority ().

Numbers are expressed in floating point signed decimal arithmetic with up to 9
significant figures; exponential notation is not allowed.

Expressions are evaluated in 14-bit arithmetic; note that approximates numbers with
significant figures after the decimal point and hence a certain margin of error applies.

Note also that the number of a variable can itself be an expression, thus enabling
indexed variable reference.

Example
VA1 = 2
VA2 = 2000.0
VA3 = VA[VA1] ;indexed variable reference
VA4 = 45.0
VA5 = VA2 + (VA3 * SIN(VA4)) * VA2
G01 F1000 XVA2 YVA5
VA1 = VA1 + 1

N100 %regasync[0] = %nc[1].du[0]
N200 %regasync[1] = %nc[1].du[1]

N600 VA[0] = 1
N600 VL[0] = 2
N600 VG[0] = 3

N900?%regtool[0] = 4.1 * 2 - 1
N900?%regtool[0] = 1
N900?%regtool[0] = 1

N900 %regtool[0].0 = 1
N900 %regtool[0].1 = 0
N900 %regtool[0].2 = 1

N1000?VA[0] = 123.0 * -1
N1000?VA[1] = 123.0 * -2

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.10

N1020 VA0 = %regtool[0]

where shared memory is named as follows:

dword regasync[10]

dword regtool[10]

typedef struct{
RETAIN dword du[10];

} DU;

DU nc[5];

Addition Calculates the algebraic sum of two operands.

Syntax exp1 + exp2

Subtraction Calculates the difference between two operands.

Syntax exp1 - exp2

Negation Changes the sign of an operand: an operand with a negative value becomes positive and
vice versa.

Syntax - exp1

Multiplication Calculates the product of two operands.

Syntax exp1 * exp2

Division Calculates the ratio between two operands.

Syntax exp1 / exp2
The value of the dividend (exp2 in the example) must be different from 0.

Modulus of the
division

Calculates the remainder of a division.

Syntax MOD(exp1,exp2)
Example:
VAR1 = MOD(5,2)
The result of this division is 2 and the remainder is 1; thus variable VAR1 equals 1.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.11

Raising Calculates raising of base A with exponent B;

Syntax A ** B
This operator has certain limits as to the values it can use:

• Generates a domain error if A and B are both 0.

• Generates a domain error if A<0 and B is not an integer.

Square root calculates the square root of the associated value.

Syntax SQRT(expr)
The expr value must not be negative.

Absolute value Calculates the absolute value of the associated operand, i.e. if the value of the operand is
positive it remains unchanged, otherwise it is made positive.

Syntax ABS(expr)

Rounding off to the
lower integer

Approximates a non-integer value to the lower integer value nearest to the original
value.

Syntax FIX(expr)
Example:
VARA = FIX(3.123)
The result of the operation is 3.

Rounding off to the
higher integer

Approximates a non-integer value to the higher integer value nearest to the original
value.

Syntax FUP(expr)
Example:
VARA = FUP(3.123)
The result of the operation is 4.

Trigonometric
operators

The operators listed below use variables or constants that express angles or that provide
an angle as a result, as operands.
The numeric characteristic of the angles is that their value is periodic, i.e. values beyond
the –360° to +360° range can be brought within this range. The operation that brings the
value of an angle back within the illustrated range is called angle normalizing.

Angle normalizing is obtained by applying the 360° modulus function to the angle to
normalize.

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.12

Syntax ALPHA = MOD(BETA,360)
Normalizes the value of the angle in the BETA variable and sets the result in the
ALPHA variable.
Normalizing is implicit and must not be calculated, i.e. the SIN(420) and SIN(60)
functions are equivalent.
All the parameters are given in degrees.

Arc-Cosine Calculates the arc-cosine of the associated value.
This is the inverse function of the cosine. The value of the parameter must be between –
1 and 1.

Syntax ACOS(expr)
The value calculated is an angle.

Arc-Sine Calculates the arc-sine of the associated value.
This is the inverse function of the sine. The value of the parameter must be between –1
and 1.

Syntax ASIN(expr)
The value calculated is an angle.

Arc-Tangent Calculates the arc-tangent of the associated value.
This is the inverse function of the tangent. The value of the parameter must be between
-∞ and +∞.

Syntax ATAN(expr)
The value calculated is an angle.

Cosine Calculates the cosine of the associated value.

Syntax COS(expr)
Expr is an angle and the value calculated is between -1 and 1.

Sine Calculates the sine of the associated value.

Syntax SIN(expr)
Expr is an angle and the value calculated is between -1 and 1.

Tangent Calculates the tangent of the associated value.

Syntax TAN(expr)
Expr is an angle and the value calculated is between -∞ and +∞..

Logic operators
(Boolean)

The characteristic of the logic operators is that they only evaluate two values of a
variable.
The values considered are Boolean values, TRUE or FALSE.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.13

The TRUE value is associated with a variable if its content is not zero. The FALSE
value is associated if its content is zero.
The result of a comparison always gives a Boolean result, TRUE or FALSE.

Compares if equal This operator is significant if used in an expression within a conditioned jump
instruction (IF).
Compares the two operands are gives TRUE if they are equal or FALSE if they are not
equal.

Syntax expr1 == expr2
IF(expr1 == expr2) JMP

Compares if more or
equal

This operator is significant if used in an expression within a conditioned jump
instruction (IF).
Compares two operands and gives TRUE if the first is the same or more than the second,
or FALSE if it is less.

Syntax expr1 >= expr2
IF(expr1 >= expr2) JMP

Compares if more This operator is significant if used in an expression within a conditioned jump
instruction (IF).
Compares two operands and gives TRUE if the first is more than the second, or FALSE
if it is less or if the two are equal.

Syntax expr1 > expr2
IF(expr1 > expr2) JMP

Compares if different This operator is significant if used in an expression within a conditioned jump
instruction (IF).
Compares the two operands are gives TRUE if they are different or FALSE if they are
equal.

Syntax expr1 != expr2
IF(expr1 != expr2)JMP

Compares if less or
equal

This operator is significant if used in an expression within a conditioned jump
instruction (IF).
Compares two operands and gives TRUE if the first is the same or less than the second,
or FALSE if it is more.

Syntax expr1 <= expr2
IF(expr1 <= expr1) JMP

Compares if less This operator is significant if used in an expression within a conditioned jump
instruction (IF).
Compares two operands and gives TRUE if the first is less than the second, or FALSE if
it is more or if the two are equal.

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.14

Syntax expr1 < expr2
IF(expr1 < expr1) JMP

And Allows several logic expressions to be compiled, thus complex test conditions can be
expressed in the conditioned jump.
The AND operator gives TRUE if both the operators it associates are TRUE. It gives
FALSE in all other conditions.

Syntax Expr1 && Expr2

The following table outlines the results that can be obtained by applying the AND
operator.

A B Expr1 && Expr2

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

A conditioned jump instruction with 2 conditions associated with an AND operator is
illustrated below.

IF (Var1 > Var2) && (Var3 < Var4) JMP

Or Allows several logic expressions to be compiled, thus complex test conditions can be
expressed in the conditioned jump.
The OR operator gives TRUE if at least one of the operators it associates is TRUE. Only
if both are FALSE will the OR operator give FALSE.

Syntax expr1 || expr2

The following table outlines the results that can be obtained by applying the OR
operator.

Expr1 Expr2 Expr1 || Expr2

TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

A conditioned jump instruction with 2 conditions associated with an OR operator is
illustrated below.

IF (Var1 > Var2) || (Var3 < Var4) JMP

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.15

Negation The logic value of an expression is varied by means of this operator.
The operator does not give TRUE if the operand to which it is associated is FALSE and
gives FALSE if the operand is TRUE.

Syntax ! expr1

The following table outlines the results that can be obtained by applying the NOT
operator.

Expr1 ! Expr1

TRUE FALSE

FALSE TRUE

A conditioned jump instruction with 1 NOT condition is illustrated below.

IF NOT (A = B) GOTO

3.2.8 Use of #QNAN

#QNAN (Quiet Not A Number) is a particular configuration a variable can assume to
indicate that no tolerated numeric value is present. For example, #QNAN will be found
in fixed cycle parameters that have not been explicitly programmed and for which a
default value is not available. Since the ISO language does not allocate an address if
this contains a #QNAN, instructions that move a set of axes that depend on the
combination of programmed parameters without having to check all the combinations
one by one, can be programmed within the fixed cycles, for; e.g. if in the following line
within a fixed cycle:

G0 XVA1 YVA2

...VA1 and VA2 are parameters, this line will only be automatically interpreted as above
if both the values have been explicitly programmed, or:

G0 XVA1

or:

G0 YVA2

...depending on whether only the first variable or only the second variable are present,
and so forth.
If a #QNAN variable is subjected to operations, they will always give #QNAN as a
result.
Boolean comparisons between variables of which at least one is a #QNAN, give
unforeseeable results. This is why comparing a number with #QNAN cannot be done
with something of the IF type (a == QNAN())!!! Use the ISQNAN(n) for this purpose,
e.g.:

IF (ISQNAN(VA2)) ...

To create a #QNAN use QNAN().

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.16

3.3 Program flow control

3.3.1 Unconditional jump

Syntax JMP number
JMP label

JMPF number
JMPF label

Description Allows modification of the program execution sequence by directing execution to the
block identified by 'number’ . or from the label, Labels are identified by
.alphanumerical string.
Use of the JMPF instruction instead of JMP speeds up the cycle. JMPF only tolerates
jumps to lines that follow the current line, i.e. it only tolerates jumps forward.

Example
N100 ;error signal
N110 G04 F1 ;wait
N120 JMP 110 ;infinite loop
dX=0
.LOOP
 G0 X(100+dX) Y(210+dX)
 dX = dX + 0.5
IF (dX < 10) JMP .LOOP

See also Test, Standard programming: Block number

3.3.2 Test

Syntax IF (expression = = expression) <functions> ;equal
IF (expression != expression) <functions> ;not equal
IF (expression > expression) <functions> ;greater than
IF (expression < expression) <functions> ;less than
IF (expression > = expression) <functions> ;greater than or equal to
IF (expression < = expression) <functions> ;less than or equal to
IF (!expression) <functions> ;equal to zero
IF (expression) <functions> ;not equal to zero

Description Compares two expressions and executes the rest of the block if the logical function
returns true.
N.B.: comparison must be done between commensurable expressions (sign, dimension).
In other words a 16-bit signed word (for example a %QW) cannot be compared to an
unsigned word (for example 0xFFFF written explicitly). To make the comparison the
signed variable must be cast as follows:

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.17

;IF(%QW2 == 0xFFFF) JMP 110 incorrect!!!

IF((%QW2 & 0xFFFF) == 0xFFFF) JMP 110 ; correct

Example
N100 VA1 = 100.0 ;initialise variable
N200 G0 XVA1 ;position X
N300 M80 ;execute machining sequence
N400 VA1 = VA1 + 10.0 ;increment variable
N500 IF (VA1 < 205.0) JMP 200 ;repeat 10 times, then
continue

IF(%C2.1==1) JMP 100
IF((%C2 && %C3 && %C4) || %C2.1 || %C2) JMP 110

IF(%IW1 > 100) JMP 10
; IF(%QW2 == 0xFFFF) JMP 10 incorrect!!!
IF((%QW2 & 0xFFFF) == 0xFFFF) JMP 10 ; correct
IF(%QW2 == 0x1B) JMP 10
IF(%QW2 == %cnerr.err) JMP 10
IF(%QW2.15) JMP 10
IF(%C2.1 == 1) JMP 10

See also Conditioned Test

3.3.3 Conditioned Test

Syntax IF condition THEN
Block 1

ELSE
Block 2

ENDIF

Description Checks the condition. If this is true, the following instruction block will be executed
(block 1 of the syntax). If the condition is false, the instruction block that follows the
ELSE key will be executed (block 2 of the syntax, if present). The process joins up after
the key word ENDIF.
A block of instructions within an IF-THEN-ELSE can contain other IF-THEN-ELSE
instructions. The maximum nesting level is 5.

Example
IF(MyVar > 100) THEN

G0 X100 Y 100
G4 F2
M19 S45
MyVar = 0

ELSE
MyVar = MyVar + 1
G0 Z0

ENDIF

Also see Test

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.18

3.3.4 WHILE Block

Syntax WHILE (condition)
Block

ENDW

Description Executes the block of instructions for as long as the expression remains true. As soon as
the condition becomes false, the controls passes on to the block that follows ENDW.
If the condition is false at the first iteration, the block will not even be executed once.

Example
WHILE(MyVar != 100)

G0 X100 Y 100
G4 F2
M19 S45
MyVar = MyVar+1

ENDW

Since this block of instructions is evaluated by a pre-processing stage carried out before
accomplishment of the machine movement in real time, it is advisable to use conditions
that cannot vary in real time. This construction is used to create parametric iterations but
not to block the processing phase until an event occurs (e.g. activation of an input
signal). The following example is not an example of good programming.

Example of improper
use

G0 X100 Y100
WHILE(“%IW0.0” == 0)

G4 F1
ENDW

This example shows how a physical input is tested in the pre-processing phase. The
previous instruction will be executed as soon as the real-time executor examines it. The
WHILE block therefore has time to reiterate several times before the G0 block is
executed, waiting for the event to occur. Every time the WHILE cycle is reiterated, the
process prepares a G4 instruction to send to the executor block, while the pre-processing
block continues to iterate without a pause, waiting for the end of iteration event.

One of the ways to synchronize the pre-processing block with the executor is to use a
SYN instruction.

G0 X100 Y100
WHILE(“%IW0.0” == 0)

SYN
G4 F1

ENDW

This method blocks the pre-processing stage until the execution stage has accomplished
each instruction. In the example, this means waiting for the G0 block to have terminated
before executing block G4. In the successive iterations, a new G4 block will only be sent

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.19

to the executor when this has finished with the previous one. In actual fact, a time setting
is included in the pre-processing block.

Also see REPEAT, FOR, BREAK

3.3.5 REPEAT Block

Syntax REPET
Block

UNTIL (condition)

Description Executes the block of instructions for as long as the expression remains false. As soon as
the condition becomes true, the controls passes on to the block that follows UNTIL.
This construction guarantees execution of the block of instructions it contains at least
once. In actual fact, the block is first executed and its condition is only evaluated
afterwards. If the condition is true, the block will not be reiterated. Vice versa, it will be
executed again until the escape condition occurs.

Example
REPEAT

G0 X100 Y 100
G4 F2
M19 S45
MyVar = MyVar+1

UNTIL (MyVar == 100)

Since this block of instructions is evaluated by a pre-processing stage carried out before
accomplishment of the machine movement in real time, it is advisable to use conditions
that cannot vary in real time. This construction is used to create parametric iterations but
not to block the processing phase until an event occurs (e.g. activation of an input
signal). The following example is not an example of good programming.

Example of improper
use

G0 X100 Y100
REPEAT)

G4 F1
UNTIL (“%IW0.0” != 0)

This example shows how a physical input is tested in the pre-processing phase. The
previous instruction will be executed as soon as the real-time executor examines it. The
WHILE block therefore has time to reiterate several times before the G0 block is
executed, waiting for the event to occur. Every time the WHILE cycle is reiterated, the
process prepares a G4 instruction to send to the executor block, while the pre-processing
block continues to iterate without a pause, waiting for the end of iteration event.

One of the ways to synchronize the pre-processing block with the executor is to use a
SYN instruction.

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.20

G0 X100 Y100
REPEAT

SYN
G4 F1

UNTIL (“%IW0.0” != 0)

This method blocks the pre-processing stage until the execution stage has accomplished
each instruction. In the example, this means waiting for the G0 block to have terminated
before executing block G4. In the successive iterations, a new G4 block will only be sent
to the executor when this has finished with the previous one. In actual fact, a time setting
is included in the pre-processing block.

See also WHILE, FOR, BREAK

3.3.6 FOR Block

Syntax FOR index=start TO end BY step
Block

ENDFOR
Where:
index is the name of the variable that uses the number of iterations as a counter
start is the initial value of the counter
end is the final value of the counter, i.e. the condition that determines the end of the

iteration
step this is the increase applied to the counter on each iteration. It can also have

decimal and/or negative values. In this case, start must be greater than end.

Description Repeats the block of instructions for the number of iterations required to bring the index
variable from the start value to the end value, increasing it on each iteration of the step
value.
If the “BY step” part is omitted, the process assumes that the increase is unitary.

Example The following example accomplished 25 iterations (from 0 to 100 at step 2.5)
DBL ind;

FOR ind=0 TO 100 BY 2,5
G0 X100+(ind*2) Y(ind/2)
G1 X(ind/2) Y100+(ind*2)
G4 F (ind/10)

ENDFOR

The following example is identical to the previous one but uses a unitary increase, thus
makes 100 iterations.

DBL ind;

FOR ind=0 TO 100 BY 2,5
G0 X100+(ind*2) Y(ind/2)
G1 X(ind/2) Y100+(ind*2)
G4 F (ind/10)

ENDFOR

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.21

See also WHILE, REPEAT, BREAK

3.3.7 Cycle interruption - BREAK

Syntax BREAK

Description Interrupts any iteration cycle, bringing the execution to the first instruction that follows
the iteration cycle that contains BREAK.
Interruption of a nested iteration cycle with one or more iteration cycles will not stop the
iteration of the outermost cycles.
The BREAK instruction can be used for FOR, WHILE and REPEAT cycles.

Example
DBL ind;
FOR ind=0 TO 100 BY 2,5

G0 X100+(ind*2) Y(ind/2)
G1 X(ind/2) Y100+(ind*2)

IF(%C0.0 == 1) BREAK

G4 F (ind/10)
ENDFOR

See also WHILE, REPEAT, FOR

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.22

3.3.8 Repeat

Syntax RPT start block, end block, number of repeats

Description Allows repetition of a specified block sequence for the specified number of repeats .
The sequence of blocks to repeat is defined by the start block and end block.
Start and end blocks can be identified by:

• numeric constant;

• expression

• label.

Number of repeats. Can be specified by an expression
Up to 3 levels of nesting are allowed.

Example
G0 X0 Y0 Z200
G0 B0 ;position table at 0°
RPT 10, 70, 1 ;repeat N10-N70 once
10, 70, 1 ;repeat N10-N70 once
G0 B45 ;position table at 45°
RPT G0 B90 B45 ;position table at 90°
RPT 10, 70, 1 ;repeat N10-N70 once

;(Definition of technical parameters for drilling)
N10 T1 M6
N20 G81 DR125 DE100 DH125 FW150 FR15000
N30 X10 Y10 ;drilling
N40 G80 ;cancel G81 mode
N50 T1 M6
;(Definition of technical parameters for tapping)
N60 G84 DR125 DE100 DH125 RW150 RR15000
N70 RPT 30, 30, 1 ;executes tapping

;at the same position where
;drilling has been done

N100 M30

See also See use with Fixed system cycles and macro instructions

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.23

3.3.9 Nesting levels: sub-programs and fixed cycles

Nesting levels: sub-
programs and fixed
cycles

Compilation of a program can be made modular by using the calls to fixed cycles or
subroutines (sub-programs). Besides making the code more legible, this type of
programming enables already written code parts to be reused. A sub-program can recall
another sub-program through to a maximum of 5 nested calls.

Principal %2

level 0

sub 1 : 1

level1

sub 2 : 2

level 2

level n

Figure 3.1 -

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.24

3.3.10 Subprogram start (fixed cycle)

Syntax prototype: fixed cycle name
where:

prototype = var1,var2, ...

var n =[variable]default value or variable

Description The start subprogram block (fixed user cycle) contains a comment, the start subprogram
character ":" and the subprogram number (fixed cycle name). User fixed cycles
(filename.cfu) can be freely written by the user.

The following description only regards the system fixed cycles.
The subprogram start block (system fixed cycle) contains the prototype, the subprgram
start character ":" and the subprogram number (fixed cycle name). System fixed cycles
(filename.cfs) are factory set.Each subprogram starts with a start block.

Prototype Variables can be listed in any order. They can have any single-letter
address (so that up to 26 variables (A-Z) are allowed). Contain all the
numerical values, except for T and E, which can be followed by a string in
brackets.
Variables with numerical values are passed to the fixed cycle by automatic
variables of type double VA0 => VA25.

Number
fixed cycle

A unique identifying number which corresponds to the partprogram
number.

A variable declared as self-cancelling in the prototype must be declared between square
brackets, and when called can be:

• by value => the actual value is passed to the fixed cycle;

• omitted => if the prototype contains a default value for this variable, the default
value is passed; if no default value is specified in the prototype, Nan is passed (Not
A Number).

If the variable is assigned the value Nan, a special ISO command option can be used:
when an ISO address is followed by Nan, the address is ignored. If a feed command for
a given axis is followed by Nan, for example, the axis is ignored (it can therefore not be
one of the currently available axes as listed in the machine parameters). If a G, M or F
address is followed by Nan, the feed or PLC command or speed setting is not executed
(in the case of feed commands, any following commands with valid addresses are
correctly executed in the active mode). This type of functionality, with Nan values, has
been extended to the following addresses:

G, M, T, D, F, S,
X, Y, Z, U, V, W, A, B, C,
R, I, J, K,
TGR (the three values which follow TGR), SVR, SVL,
CHA (chamfer), RAD (radius),

A modal parameter in the prototype must not be in square brackets and, when called,
can be:

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.25

• by value => the actual value is passed to the fixed cycle;

• ommitted => if this is the first call of that fixed cycle at that level of nesting, an
error is returned, if not, then the last evaluated value for that fixed cycle at that level
of nesting is returned.

Note that this mode is maintained only at the given level of nesting.
A prototype must be inserted before the symbol:.

Example A sample part program follows (at nesting level 0):

N30 F100
N40 G17 G0 X 0 Y 0
N50 G100 B 20.0 E "string" C 30.0 N197
 B 60.0 ;modal call of G100
N58 G80 ;cancel modality of G100
N59 JMP 197 ;jump forward two lines
N60 G01 X VL100 Y VL104
N197 M10
N199 M30
N200 END

fixed cycle G100(nesting level 1):

[B] C E [F] 30.0 [G] [N]:100 ;prototype
G1 X VA1 Y VA2 ;uses values 20.0, 30.0 of variables B and C
G1 X VA6 Y VA1 A VA6 ;uses Nan, 30.0, Nan of parameters G,
C, G
CALL MrlChangeTool(3,10) ;call C
VL104 = 33
VL100 = 66
G101 A 10 B 11 C 12
RET

and fixed cycle G101(level of nesting 2):

[A] 10.0 B [C] 25.2:101 ;prototype
G1 X VA0 Z VA1;uses values 10.0, 11.0 of parameters A and
B
RET

See also Call to subprogram, CFU (User fixed cycle) Advanced Programming.

3.3.11 Subprogram end (fixed cycle)

Syntax RET

Description Returns execution to the calling program.

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.26

3.3.12 Program end

Syntax END

Description Terminates program execution.

3.3.13 Call to subprogram CFU (user fixed cycle)

Syntax JSR number expression.1 expression.2 ... expression.n
JSR "name" expression.1 expression.2 ... expression-.n
JSR variable expr. 1 expr.2..expr.n

Description The named subprogram is executed before passing to the next block in the linear
sequence.
The subprogram can be specified by

• from the number;

• from the alphanumerical name between inverted commas “”;

• from the content of a string type of variable (symbolic system variable -%nomesub-
or symbolic variable defined by the user).

Variables can be passed to the subprogram by value; the numerical values of the
variables are located by the subprogram in the automatic registers VA0, VA1, ... VAn,
in the order in which they are defined.
Up to 5 levels of nesting are possible.

Example Main program:

STR NOMESUB
JSR 1 10.0 VA12 (VA10+VA20)

Drilling subprogram: 1
G0 XVA1 YVA2 ;feed to hole position
G1 ZVA0 F1000 ;execute drilling
G0 Z100 ;retract tool from piece
RET ;return to main program

NOMESUB = “holes”
JSR NOMESUB 10.0 VA12 (VA10+VA20)
JSR "holes" 10.0 VA12 (VA10+VA20)

Drilling subprogram: holes
G0 XVA1 YVA2 ;feed to hole position
G1 ZVA0 F1000 ;execute drilling
G0 Z100 ;extract tool from piece
RET ;return to main program

See also Subprogram start (fixed cycle), Subprogram end (fixed cycle)

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.27

3.3.14 Subprogram call CFS (system fixed cycle)

Syntax G number var expr var expr ...

where

var: [A, B, ..., Z] variable in the prototype

Type of function Modal

Description The named subprogram is executed before passing to the next block in the linear
sequence.
The number following the G code indicates the subprogram in the user-defined system
directories.
The variables which appear in this block must be among those declared in the fixed
cycle prototype, otherwise an error is returned. Variables not explicitly passed to the
subprogram are assigned their default values (self-cancelling variables) or their previous
values (modal variables).
The variables are accessed by the fixed cycle via the automatic variables VA0..VA26.
VA0 contains the value of variable A, VA1 the value of variable B, etc.
Up to 5 levels of nesting are possible.

After the first call of a fixed cycle only those variables which have changed relative to
the first call need be passed explicitly in successive calls.

Example Main program:

N30 F100
N40 G17 G0 X 0 Y 0

N50 G100 B 20.0 E "string" C 30.0 N197
 B 60.0 ;modal call of G100

N58 G80 ;cancel G100 mode
N59 JMP 197 ;jump forwards two lines
N60 G01 X VL100 Y VL104
N197 M10
N199 M30
N200 END

[B] C E [F] 30.0 [G] [N]:100 ;prototype

See also Subprogram start (fixed cycle), Subprogram end (fixed cycle), Cancels a fixed
cycle’s mode

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.28

3.3.15 Cancels a fixed cycle's mode

Syntax G80

Description In the blocks following a fixed cycle call, declaring one or more variables involved in
the fixed cycle causes it to execute.

G80 cancels the fixed cycle mode, that is, it allows execution of successive blocks
without automatically calling the fixed cycle itself

In the same way it is possible to cancel a fixed cycle mode with G0, G1,G2 etc...

Example Main program:

N30 F100
N40 G17 G0 X 0 Y 0

N50 G100 B 20.0 E "string" C 30.0 N197
 B 60.0 ;modal call of G100

N58 G80 ;cancel G100 mode
 B 45.0 ;position polar axis B

or
G0 B 45.0 ;position polar axis B

[B] C E [F] 30.0 [G] [N]:100 ;prototype

See also Subprogram start (fixed cycle), Subprogram end (fixed cycle)

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.29

3.3.16 Call-back function in “C” language

Syntax CALL <function name> (<var1>, <var2>,...)

<var>=<expression>|^<output variable>

Description Where:
function name is the name of the function in "C".
The parameters passed to the function are listed between round brackets (max 32
parameters).
The fixed cycle C access the parameters by means of a parameter counter and a list of
the parameters themselves, respectively iArgc and Args. Args specifies the type and
value of each parameter. This information allows checking whether the passed
parameter is type-compatible with the function; the correctness of the call can thus be
checked by the cycle itself.

Finally, it will have access to the ISO channel descriptor and a limited series of
functions .

Example
CALL MrlPtiDrill (3, 10)

See also

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.30

3.3.17 Forced escape from the interpreter with error

Syntax ERROR(err_nr)

Description This instruction stops program execution and displays the error message that depends on
the err_nr value.
It can be used to signal faults that have occurred in the automation part created in ISO
language.
The ERROR only has a direct effect on the channel that is executing the program that
invoked it. Other channels in parallel execution continue their execution unless there is
an intervention from the PLC.
The error code can be from 0 to 9999, even though it is advisable to use values over 768
to prevent conflicts with signals used by the firmware of the CNC.
To customize the message to associate with the error, customize the RunXXX.err file,
where XXX means the three-letters that distinguish the language of the translation (ITA,
GER, FRA, ENG ...). The generated alarm is managed in exactly the same way as the
alarms generated autonomously by the NC.

Esempio
IF((VL10 < 1000) AND (VL10 > 0)) THEN

G0 X VL10
ELSE

ERROR(800)
ENDIF
In the example, the field of existence of the VL10 variable before using it for
positioning. A fault is signalled if the variable is beyond the field of existence.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.31

3.4 Special functions

3.4.1 Await termination

Syntax SYN

Type of function Self-cancelling

Description Halts program calculations until the preceding block has terminated execution.
If this command is not specified, program calculations always run several blocks ahead
of actual execution for higher output.
This command is specified in particular to ensure that the information used in
parameters (e.g. information from axis position sensors or limit switches) are checked in
realtime and not in advance.

Example
N100 G1 G91 X-0.5 Y-0.5 ;approach by one step
SYN ;await axis positioning
IF (VG500 == 0) JMP 100 ;if the limit switch has not been
tripped, approach by a further step

3.4.2 Message display in phase with the executor

Syntax $ (text)

Type of function Self-cancelling

Description Displays the text between brackets in synchrony with execution of the blocks that
precede it.

3.4.3 Memory read/write

Syntax VA, VL, VG parameter_number = %identifier
[?]%identifier = VA, VL, VG parameter_number

Description Enables reading and writing to a register in shared memory .
[?] indicates writing synchronous with execution.
Note that the unit of measurement used by the whole value variable is crucial, in the case
of a linear axis position it is a thousandth of a mm (µm), hence, to convert to a floating
point value it must be divided by 1000.

Example
?%MYMEAS = VA11

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.32

See also Enter a physical or logical output

3.4.4 Enter a physical or logical output

Syntax ?%QW <output number> = 1 ;sets the physical output to synchronous mode
?%QW <output number> = 0 ;resets the physical output in synchronous mode
[?]%C <output number> = 1 ;sets the logical output in synchronous or asynchronous
mode
[?]%C <output number> = 0 ;resets the logical output in synchronous or
asynchronous mode

Description The character '?' indicates that the operation must be executed synchronously with the
other blocks of the program.
?%QW10.4 = 1 ; sets the bit 5 of physical output 10
?%QW10.4=0 ; resets bit 5 of physical output 10
?%QW10=10 ; assigns the value 0x01010 to physical output 10

Writing to physical outputs must be synchronous with execution to ensure the integrity
of the IO states which can also be accessed by the PLC.

?%C10.2 = 1 ; sets bit 3 of logical output 10
?%C10.2 = 0 ; resets bit 3 of logical output 10
?%C10= 14 ; assigns the value 0x01110 to logical output 10

The value of a physical or logical input can be tested with an IF statement.

Writing to physical registers (%QW) must be done synchronously (so that the registers
are not overwritten by the PLC refresh cycle). Writing to logical registers (%C) can also
be asynchronous if the register in question is not used by the PLC.

Example
?%C2.0 = 1
?%C2 = 13
%C2.1 = 0
%C2 = 14
?%QW2.1 = 1

IF(%QW2 > 100) JMP 110
IF(%IW2.1==1) JMP 200
IF(%C2.1==1) JMP 100

IF((%C2 && %C3 && %C4) || %C2.1 || %C2) JMP 120

See also Reading and writing memory’s register

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.33

3.4.5 Enabling hydraulic tapping

Syntax ADP[Axis, Mode]

Description This command is intended to resolve problems deriving from the non-linearity of the
hydraulic axes. Tapping can be reduced to a linear interpolation between a linear axis
and a spindle; the non-linear behaviour of a hydraulic axis, especially during
acceleration and deceleration, and the fact that the tool and the piece are rigidly coupled,
results in defective machining. This problem is surmounted by the use of a self-learning
algorithm which monitors the realtime error on the two axes; this is then used to correct
the piston control voltage to reduce the errors to a minimum.

Axis Hydraulic axis name .

Mode This can have one of the following values:

• INIT initialises the state of the function

• START synchronises the start of the self-learning
cycle

• STOP stops the self-learning cycle

Example
ADP[Z,INIT]
ADP[Z,START]
G63 S1200 Z0 K5.0 ; tapping forwards
G63 S1500 Z80 K-5.0 ; tapping reverse
ADP [Z,STOP]

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.34

3.4.6 Defining path axes

Syntax CON [Axis1, Axis2, ..., Axisn] = 1 ; couple ON
CON [Axis1, Axis2, ..., Axisn] = 0 ; couple OFF

Type of function Modal

Description CON[Axis list] = 1: Couple ON
Updates the register that contains the mask of path axes, entering 1 on a level with the
axes specified in the Axes List.

CON[Axis list] = 0: Couple OFF
Updates the register that contains the mask of path axes, by resetting the bits on a level
with the axes specified in the Axes List.

The Path Axis Template contains:

1 on a level with the axes that must be torqued since they are involved in the
programmed interpolation;

0 on a level with the axes that are not involved in the programmed
interpolation;

Axis list A list of the axes which must be coupled for execution
of the programmed interpolation.

When the channel is reset the coupled axes coincide
with the axes configured in the channel.

N.B. The CON commands (just like G16) have no direct
electromechanical consequences; these are handled by
the PLC: CON simply instructs the PLC to
couple/uncouple the axes in question. Vice versa, the
PLC could initiate the operation and communicate the
fact to the ISO channel which uses the CON to adjust
internally.

Example
N100 G0 X100 Y200 Z300 ;linear3d
N200 CON[Y] = 0
N300 X200 ;linear2d
N400 CON[Z] = 0
N500 X300 ;single
N600 CON[Y,Z] = 1
N700 Z0 ;linear3d

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.35

3.4.7 Definition of the Axes belonging to the Channel

Syntax GRP [Axis1, Axis2, ..., Axis n] = 1 ; Axes associated with the channel
GRP [Axis1, Axis2, ..., Axis n] = 0 ; Axes disassociated from the channel

Type of function Modal.

Description GRP[Axes List] = 0
The axes in the list are released from the channel that will no longer use them.
Successive instructions that require a previously released axis to be moved, cause an
error signal.
GRP[Axes List] = 1
declares that the channel is managing the list of axes defined by the instruction. The list
of defined axes adds to the axes that were already being managed by the channel. The
axes to which the process refers must be associated with the channel in the static mode
in the channel configuration table. This command is used to reset a previous releasing
action of one or more axes (GRP[..]=0).

Shared axes This command is used to handle resources shared amongst several channels. In this case,
there must be a configuration in which two or several channels have one or more shared
axes.
An axis is shared by several channels when the same logic number (system wide)
appears in the static configuration of several channels. The shared axes can have
different names in different channels (e.g. X shared in CH 0 and U in CH 1).

The automation must be designed (part program and PLC) so that each channel only
links to an axis when this is really necessary (GRP[ax]=1) and releases it as soon as it is
no longer required (GRP[ax]=0).
Processing of a GRP function causes the axes associated with the channel (CO_PATAX,
cn[..]rc[30]) to be publicized besides activating a strobe signal (M_STB_GET,
cn[..].rc8.17). execution is suspended while awaiting the acknowledge synchronism of
the PLC (M_ACK_GET, cn[..].rc0.29).
See the “Interface registers” manual for greater details.

Example
G0 X100 Y200 Z300 ;linear3d
GRP[Y] = 0
G1 X200 Z100
Z0
X0
GRP[Y] = 1
G0 X100 Y200

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.36

3.4.8 Correction by zones

Syntax CZO[Axis] = 0 ;correction by zones disabled
CZO[Axis] = 1 ;correction by zones enabled

Type of function Modal

Description Correction by zones reduces errors due to mechanical non-linearity in the drive. 255
zones (defined by 256 points) of equal length are available, between a minimum and
maximum value, for each of which suitable correction can be specified.
Positions below the programmed minimum are corrected with the value of the first
programmed point; positions above the programmed maximum are corrected with the
value of the last programmed point.

Only after a first self-learning phase, in which the compensation values are memorised,
can correction by zones be activated. In this mode, each calculated position is displaced
by the zone-relative compensation.

Example
Z AXIS COMPENSATION LEARNING CYCLE %1101

CZO[Z] = 0 ; Disable correction by zones

VA0 = 0 ; Minimum position [mm]
VA1 = 1000 ; Maximum position [mm]
VA2 = 255 ; Number of zones
VA3 = (VA1 - VA0) / VA2 ; Size of zone i
VA4 = 0 ; Sample index
VA5 = 0 ; Increment dimension
VA10 = %ax[2].pa[40] ; Associated CZone Buffer index

G0 ZVA0 AVA0

N100 POS[Z] = VA5 POS[A] = VA5 FA[Z] = 10000 FA[A] = 10000
N200 SYN
N300 VA6 = QTA(Z)
N400 VA7 = QTA(A)
N500 %czone[VA10].sam[VA4] = (VA7 - VA6) * 1000
N600 VA4 = VA4 + 1
N700 VA5 = VA5 + VA3

RPT 100, 700, VA2

%czone[VA10].qtamin = 0
%czone[VA10].qtamax = VA1 * 1000
%czone[VA10].nzone = VA2

M10 ; Couple Off
CZO[Z] = 1 ; Send buffer and enable correction by zones
M11 ; Couple On
M30

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.37

3.4.9 Enabling program simulation

Description The channel sets to TEST mode and executes:

• a syntax check of the program lines

• parameter calculations

• radius and length compensations

• machining feasability analysis(Path allowed by CUT, SW limit positions)

• runs a parametric flow check (IF, JMP)

Example
/N100 IF (VG500 != 0) JMP 1000

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.38

3.4.10 Identifier of the number of the channel being executed

Syntax ChanNr = WHO();

Description Gives the number of the channel in which the program is running.
This function must be used for generic programs that, however, must distinguish
between one channel and the other.

Example
DBL ChanNr, ChanSpeed;

ChanNr = WHO()

; Rear speed programmed for channel
ChanSpeed = %cn[ChanNr].rc[26]

;Distinguish cycle for channel 0 and for other channels
IF(ChanNr == 0) THEN

......
ELSE

......
ENDIF

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.39

3.4.11 Probe target reading

Syntax Sample =GET (Ax);

Description Gives the target acquired by a touch probing cycle for the indicated axis.
Ax can have one of the envisaged axes names (X, Y, Z, U, V, W, A, B, C).
When an automation language command is used (_singfc(..)), this freezes the target of
the axis to which it refers when an event occurs (making or breaking of a logic or
physical contact). After this, The GET function is used to make the frozen value
available for parametric calculations.
A typical use is for acquiring information about the position of the workpiece to be
machined and for then re-processing calculations about the machining process.

Example
DBL ChanNr, ChanSpeed;

_singfc(VMAX, X, 2, 1000, 0, “%IW1.15”, 0)

SYN
VA0 = GET(X)
SFH[X] = VA0

In the example, a positioning is accomplished with X axis until the contact associated
with the IW1.15 input is released. The X axis target is frozen as soon as this event
occurs. The SYN instruction that follows, forces suspension of the pre-processing stage
until the probing cycle is completed (_singfc command). In this way, the GET function
only accesses the sampled value when this has really been acquired. Without the SYN
instruction, GET would work in advance of the probing function, causing a non-valid
value to be acquired.

3.4.12 Axis target reading

Syntax VL0 = QTA(Ax) ; Theoretic Target
VL0 = QCALC(Ax) ; Theoretic Target

VL0 = QMEAS(Ax) ; Real Target

Description These three functions give the targets of the axes to which they refer. The first two
functions have the same name, thus both give the theoretic value of the axis. The third
gives the measured target.
The fact that the first two functions have the same name is due for reasons of
compatibility with old programs.
The value given by all three functions is expressed in millimeters, while the data item is
the double precision type.

Example
DBL QTeor, QReal, FwError;

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.40

SYN
QTeor = QCALC(X)
QReal = QMEAS(X)
FwError = ABS(QTeor – QReal)

An IMPROPER function is made for an ISO channel in the example, i.e. the follow
error is calculated by acquiring the theoretic target and measured target of X axis. The
operation is improper because the axis will certainly change its position between the two
acquisitions. It is therefore only considered for explanatory purposes. The instantaneous
value of the follow error is published in real time in a register of the NC.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.41

3.5 Reference system transformations

3.5.1 PRS - Preset machine origin

Syntax PRS[Axis] = <expr>

Description Loads the specified value (position) into the axis position register (this is also called
immediate setting). The effect is to force the axis origin to the value given by the
expression.
The machine origin preset operation does not depend on the MLV level, that is,
whenever a new axis origin is set, it applies to every level of transformation of the MLV
coordinates.

Example
PRS[X]=100
PRS[Y]=100 ;forces the machine origin to the point
P0(100,100)
G0 X200 Y200 ;feed to point P1(X200,Y200) of the new
 ;system of reference

See also ROT.

3.5.2 DEF - Run-time redefinition of the axis names

Syntax DEF [first axis name] = <second axis name>

Type of function Modal

Description Maps the second axis onto the first axis name. From the next block after the DEF
command, whenever the name of the first axis occurs, it is interpreted as the second axis.
To redefine the first axis to be the first axis, use the following syntax:
DEF [<first axis name>] = <first axis name>

Example
DEF[X] = U
G33 Z-32.9 X 7 K 3 ;interpreted as G33 Z-32.9 U 7 K 3
DEF[X] = X

See also SYS.

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.42

3.5.3 SYS – Run-time re-allocation of the axes name

Syntax SYS [name of first axis] = <name of second axis>

Type of function Modal.

Description Re-allocates the name of the first axis to the name of the second axis. From the block
following that of SYS programming onwards, the interpreter reads the name of the first
axis as though it were the second axis. Use the following syntax to re-define the first
axis as first axis:

SYS [<name of first axis>] = <name of first axis>

Unlike the DEF instruction, SYS is sensitive to the matric conversion established with
MLV, i.e. if a SYS is programmed as MLV=2, if MLV=1 is entered it will be disabled.
Moreover, SYS is able to correct the direction of circular interpolations when the axes
of the contouring plane are switched with each other.

Example
SYS[X] = U
G33 Z-32.9 X 7 K 3 ;interpreted as G33 Z-32.9 U 7 K 3
SYS[X] = X

Also see DEF, ROT.

3.5.4 MIR - Mirrored machining

Syntax MIR [axis name] = 0, 1

Type of function Modal

Description MIR [axis] =1
Enter mirroring working as regards axis. Mirroringis programmed inverting axis
direction
MIR [axis] = 0
cancels mirroring for that axis

When mirroring is active the programmed direction of rotation is automatically inverted
(G2,G3) as well as the programmed tool radius compensation (G41, G42).
Once a piece contour has been machined it can be mirrored using the MIR instruction.
This results in more readable code.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.43

G1

G1

G2

x

MIR[Y]=0
MIR[X]=1

MIR[Y]=1
MIR[x]=1

MIR[Y]=1
MIR[X]=0

programmed part

Y

Figure 3.2 - Mirrored machining

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.44

Example
Mirroring test %1

F60000 D1

JSR "part1”

MIR[X]=1
JSR "part1”

MIR[Y]=1
JSR "part1”

MIR[X]=0
JSR "part1”

M30

;CAUTION: to ensure that the direction
;of radius compensation is correct
;compensation itself must be activated
;and deactivated in the part machining sequence

mirroring:part1
G41
G0 X0 Y0
G1 X500 Y500
G1 X1000 Y1000
G2 X1500 Y500 R500
G1 X500
G40 G0 X0 Y0
RET

See also ROT MLV.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.45

3.5.5 ROT – Rotation of the contouring plane

Syntax ROT[plane] = angle

The rotation plane must be selected from amongst:

- EA Rotation around X axis

- EB Rotation around Y axis

- EC Rotation around Z axis

The angle is given in degrees

Type of function Modal.

Description Enters an angle of rotation that will be applied to axes moving instructions that follow
ROT.
Rotation occurs in relation to the workpiece origins. Any transfers from the origin
(obtained with SHF instructions) will be applied after rotation. If transfer is to be carried
out first and then rotation, this latter must be programmed with a lower matric level
(MLV) that the one used to program the transfer.

Example
ROT[EC]=45
SHF[X]=100
G0 X 0 Y 0 Z 0 F 3000
G1 X 300 F 3000
G1 X 0 Y 300
G1 X 0 Y 0
M30
On the other hand, if a transfer is to be carried out first and then rotation
ROT[EC]=45
MLV=1
SHF[X]=100
G0 X 0 Y 0 Z 0 F 3000
G1 X 300 F 3000
G1 X 0 Y 300
G1 X 0 Y 0
M30

See also MLV, SHF.

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.46

3.5.6 SHF – Transfer of Origin

Syntax SHF[Axis name] = target

It only applies to axes X, Y and Z.

Type of function Modal.

Description Transfers the reference system. It is applied at activated conversion matrix level.
Programming transfers at different conversion matrix levels means applying all the
transfers programmed in the levels between 0 and i to the i-esimal level.
Matrix level selection (MLV=k) involves application of the sole transfers activated
between level 0 and level k. Transfers programmed at levels beyond i and k are not lost.
This means that restoration of a deeper matrix level reactivates the transfers through to
level i.

Example
G0 X0 Y0 F300
MLV = 1
SHF[X] = 100
G1 X0 Y0
MLV = 2
SHF[Y] = 100
G1 X0 Y0
MLV = 0
G1 X0 Y0
MLV = 2
G2 X0 Y0 I-50 J-50
M30

The following interpolation occurs in the example:

Figure 3.3 -

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.47

3.5.7 MLV - Selection of the matric conversion level.

Syntax MLV = 0...5

Type of function Modal

Description MLV enables locking the systems of reference obtained from the transformation
instructions SHF, MIR and SYS and also resetting them.
By default MLV level 0 is active, and programmed transformations are applied to the
machine's system of reference if no other levels are specified.

Programming MLV=n (n new level) all successive transformations apply to level n.
Each time the system passes to a new level the new level inherits the system of reference
defined in the preceding level, hence new transformations are summed to those already
applied.

Up to 6 MLV levels are available, from 0 to 5.
Part origin translations (G54...G57) and local origin translations (G58, G59) are active
no matter what MLV level is currently active.

Example
; LEVEL 0
SHF[X] = 500 ; X axis translation
MIR[X] = 1 ; mirror X axis
G0 X100 Y100
G0 Y200
G0 X200
G0 Y100
G0 X100

; LEVEL 1: inherits the mirroring and translations
previously applied to X

MLV=1
SHF[Y]=300 ; Y axis translation
MIR[Y]=1 ; mirror Y

MIR[X]=1 ; compensates the X axis mirroring inherited
 ; from LEVEL 0

G0 X100 Y100
G0 Y200
G0 X200
G0 Y100
G0 X100

;LEVEL 0
MLV=0 ; resets the level 0 coordinate system
 ; SHF and MIR only on X

SHF[X]=0 ;cancels the X axis translation
MIR[X]=0 ;cancels the level 0 mirroring
G0 X100 Y100
G0 Y200

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.48

G0 X200
G0 Y100
G0 X100

M30

See also SYS DEF.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.49

3.5.8 Definition of a tilting plane

Syntax MAT[asse1] = [a11 a12 a13 a14]
MAT[asse2] = [a21 a22 a23 a24]
MAT[asse3] = [a31 a32 a33 a34]

Type of function Modal.

Description A tilting plane is defined by programming the conversion matrix obtained from the
known geometric formulas.
Three terms (lines) of the matrix , one for each axis of the Cartesian triad:

MAT[X] = ...
MAT[Y] = ...
MAT[Z] =

These can be expressed in any order: The number of columns is 4 to also specify the
rotation fulcrum, i.e. the offset of the tilting plane in relation to the reference system.

After a tilting plane has been defined, copying profiles are programmed as though the
process were taking place on the XY plant (G17).

Example
DBL a11, a12, a13, a14
DBL a21, a22, a23, a24
DBL a31, a32, a33, a34
DBL alfa = 45

; Printing < DROTX >
a11 = 1.0 a12 = 0.0 a13 = 0.0 a14 = 0.0
a21 = 0.0 a22 = COS(alfa) a23 = -SIN(alfa) a24 = 0.0
a31 = 0.0 a32 = SIN(alfa) a33 = COS(alfa) a24 = 0.0

MAT[X] = [a11 a12 a13 a14]
MAT[Y] = [a11 a12 a13 a14]
MAT[Z] = [a11 a12 a13 a14]

G41
G61
G0 X0 Y0 Z0
G1 X300 F3000
G2 X0 Y0 I150 J0 F1000

See also DYNMOD

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.50

3.5.9 Tilting plane enabling

Syntax DYNMOD = 0|1

Description This function enables (DYNMOD=1) or disables (DYNMOD=0) control of the
conversion matrixes for defining a tilting plane.
If a matrix is disabled, it need not be re-programmed when successively restored.

Example
DBL a11, a12, a13, a14
DBL a21, a22, a23, a24
DBL a31, a32, a33, a34
DBL alfa = 45

; Printing < DROTX >
a11 = 1.0 a12 = 0.0 a13 = 0.0 a14 = 0.0
a21 = 0.0 a22 = COS(alfa) a23 = -SIN(alfa) a24 = 0.0
a31 = 0.0 a32 = SIN(alfa) a33 = COS(alfa) a24 = 0.0

MAT[X] = [a11 a12 a13 a14]
MAT[Y] = [a11 a12 a13 a14]
MAT[Z] = [a11 a12 a13 a14]

G41
G61
G0 X0 Y0 Z0
G1 X300 F3000
G2 X0 Y0 I150 J0 F1000

DYNMOD = 0 ; ; MATRIX disabling

G41
G61
G0 X0 Y0 Z0
G1 X300 F3000
G2 X0 Y0 I150 J0 F1000

DYNMOD = 1

G0 X1000 Y1000
G1 X600 F4000
G3 X1000 I800 J1000

M30

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.51

3.6 Automatic plane geometry

3.6.1 Chamfer between two linear segments

Syntax CHA <expr>

Type of function Self-cancelling

Description Machines a chamfer between two linear segments. The size of the chamfer (expressed
after the CHA instruction) is the distance between the two new corners resulting from
machining of the chamfer itself.

Example
N100 G01 X100.0 CHA 10.0
N200 G01 X200.0 Y 100.0

P1=(0,0) P2

P3

P4=(200,100)

P2'=(100,0)

10.0

10.0

Figure 3.4 - Chamfer between two linear segments

See also Radius between two linear segments.

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.52

3.6.2 Radius between two linear segments

Syntax RAD <expr>

Type of function Self-cancelling

Description Machines a radius between two linear segments. The size of the radius (expressed after
the RAD instruction) is the geometric radius of the arc which forms the cut. The radius,
by definition, is tangential to both linear segments.

Example
N100 G01 X100.0 RAD 10.0
N200 G01 X200.0 Y 100.0

P1=(0,0) P2

P3

P4=(200,100)

P2'=(100,0)

10.0

Figure 3.5 - Radius between two linear segments

See also Chamfer between two linear segments.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.53

3.7 Tool corrector auxiliary functions

3.7.1 Machining allowance management

Syntax SVR <expr>
SVL <expr>

Type of function Modal

Description SVR: radial or contour machining allowance.
SVL: length or depth machining allowance.

SVR: programs the machining allowance on the machined contour.
The machining allowance modifies the tool radius compensation value (if enabled)
(G41, G42) è Tool Radius + SVR.
Disabled by Svr 0.0 or G40 which disables tool radius compensation.

SVL: programs the machining allowance on the machining depth axis, that is the length-
compensated axis.
Activated by the selection of a D corrector, applies a length compensation equal to SVL
orthogonal to the selected contour milling plane (G17, G18, G19).
Disabled by D0 or Svl 0.0

Example
N.B. SVL 1 - the space is important !
D1 F2000
G18 G42 SVR 10.0 G00 X250.0 Z250.0
G01 X250.0 Z400.0
G40 G0 X0 Z0

See also Selecting the machining plane, Selecting the contour milling plane and the
direction of length correction, Tool length correction, Tool radius compensation.

3.7.2 Tangential feed in/out

Syntax TGR K<Kr> <Alfa> <Beta>
TGR R<r> <Alfa> <Beta>

Type of function Modal

Description K Kr is the number of tool radii which determines the radius of curvature of the tool feed
in,
R r is the radius of curvature of the tool feed in
Alfa is the width of the feed in arc,

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.54

Beta is the width of the feed out arc.
Program TGR to enable tangential feed in/out. This is automatic if the tool corrector is
active.
Tangential feed in is executed every time G0 is followed by G1, G2 or G3, so that the
tool describes an arc before engaging with the part surface tangentially so as not to
damage it. The arc depends on the feed in angle (Alfa) and the radius of curvature.
In the same way tangential feed out is executed every time G1, G2 or G3 are followed
by G0.

To disable tangential feed in/out, program

TGR K0 0 0

or G40 which deactivates the tool corrector.

Example TGR K3.0 45.0 30.0 (feed in at 45°, feed out at 30°, width
three tool radii)

G3

G1

Beta

Kr tool radii
or r radius of

curvature

machining allowance

Tool

Figure 3.6 - Tangential radius

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.55

3.7.3 Tool life and wear management

Syntax VTL <expression>

Description Increments the value in the Current Tool Life field (of the selected corrector) by the
value of the expression.
If the value is nil (VTL0) the Current Tool Life field is zeroed.
Handles tool life in the Counting mode using two fields in the corrector record:

• Preset Tool Life

• Current Tool Life

An alarm is generated when the Current Life is > than the Preset Life.

Each field that geometrically characterizes the tool is associated with a register for
making fine corrections to these dimensions.

These compensations will be enabled:

• from selection of corrector Dn (length compensation),

• from modal functions G41/G42 (Tool radius compensations).

This compensation is manual in release 0.0.

Example
D1
G17 G1 X100 Y200
VTL1

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.56

3.8 Three dimensional tool corrector

3.8.1 TWI: Spindle settings

Syntax TWI number

Description Declares the current spindle.

Example
TWI 9

3.8.2 THD: Tool holder settings

Syntax THD number

Description Declares the current tool holder.

Example
THD 16

3.8.3 Conventions regarding angles of rotation

We use the following convention:

Z

C

Y

B

X

A

Figure 3.7 - Conventions for programming angles

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.57

3.8.4 Orientation with polar axis coordinates

Name Significance
Rotary Head Fork Rotary Head

A Depends on feed (rotation
around Z axis)

(rotation around Z axis)

B Depends on feed (rotation
around X
axis)(*)

(rotation around X axis)

(*) In reality the B axis cannot be programmed, because in this configuration there is
no physical actuator capable of driving it. The set position must correspond to the tool
set up angle; this is used in a machining feasability analysis.

If a head has been selected with TWI, A and B are referred to the actuator axes for that
head and are taken into account by the three dimensional tool compensation. To drive
the physical A and B axes, use TWI0.

If the actuator axes cannot reach the specified positions an error is returned.

Matrix transformations cannot be applied to the coordinates of the polar axes. To apply
transformations (e.g.: to rotate the angle when a rotation/translation is active) the tool
orientation must be programmed with a notation which is independent of the actual feed
instructions (e.g.: Euler's angles).

Example
TWI4THD2
G0 X10.00 Y10.00 Z8.00 A0.00 B45.00

See also Orientation by Euler’s angles, Orientation by roll pitch yaw (RPY),Orientation by
the tool axis unit vector.

3.8.5 Orientation by Euler's Angles

Syntax MVD=EUL (default)

Description Setting the mode of interpretation of EA, EB

EA = <expr>
EB = <expr>

EA à Rotation around Z axis, parallel to the tool axis.
EB à Rotation around X axis.
To vary the angle without changing the tool feed in point, the contour milling axis
coordinates must be programmed at the same positions; otherwise no movement occurs.

Use G16 to reset axial compensation.

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.58

Example
TWI4THD2
MVD=EUL
G0 X10.00 Y10.00 Z8.00 EC0.00 EA45.00

The head programmed with TWI can be of any type with a tool holder pointing at the
upper face of the part and with the polar axes in the reference position.

Face Programming
upper EA0.00 EB0.00

front EA0.00 EB90.00

right EA90.00 EB90.00

rear EA180.00 EB90.00

left EA270.00 EB90.00

Z

Y

X

EA

EB

Figure 3.8 - Parallelepiped to which the machining parameters refer

In some applications it may be convenient to combine matrix transformations with these
operations to redefine the axes on the various faces and refer them to local origins to
facilitate programming.

See also Orientation with polar axis coordinates, Orientation by roll pitch yaw (RPY),
Orientation by the tool axis unit vector..

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.59

3.8.6 Orientation by roll-pitch-yaw (RPY)

Syntax MVD = RPY

Description Setting the interpretation of EA, EB, EC

EA = <expr>
EB = <expr>
EC = <expr>

EA à Rotation about X (Roll)
EB à Rotation about Y (Pitch)
EC à Rotation about Z, parallel to the tool axis (Yaw)

To vary the angle without changing the tool feed in point, the contour milling axis
coordinates must be programmed at the same positions; otherwise no movement occurs.

If at the next feed command the selected tool cannot reach the specified orientation an
error is returned.
Use G16 to reset axial compensation

Example
TWI4THD2
MVD=RPY
G0 X10.00 Y10.00 Z8.00 EC0.00 EB17.93 EA24.32

The head programmed with TWI can be of any type with a tool holder pointing at the
upper face of the part and with the polar axes in the reference position.

Face Programming

upper EC0.00 EB0.00 EA0.00

right EC0.00 EB90.00 EA0.00

rear EC90.00 EB90.00 EA0.00

left EC180.00 EB90.00 EA0.00

front EC270.00 EB90.00 EA0.00

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.60

Z

Y

X

EC

EB

EA

Figure 3.9 - Parallelepiped to which the machining parameters are referred

ORDER OF ROTATION:

1) EC rotation about Z

2) EB rotation about Y

3) EA rotation about X

See also Orientation with polar axis coordinates, Orientation by roll pitch yaw (RPY),
Orientation by the tool axis unit vector.

3.8.7 Orientation by the tool axis unit vector

Syntax EP <expr>
EQ <expr>
ER <expr>

Description If tool length compensation is activated (Dn), the tool orientation must be specified with
the components of the tool axis unit vector ô:
EP à X component of the tool axis unit vector
EQ à Y component of the tool axis unit vector
ER à Z component of the tool axis unit vector

Only the orientation of the axis is thus taken into account. This allows us to use the three
cosines (known to the user) which specify the direction of the tool axis from the tool
point towards the base.

To vary the angle without changing the tool feed in point, the contour milling axis
coordinates must be programmed at the same positions; otherwise no movement occurs.

If at the next feed command the selected tool cannot reach the specified orientation an
error is returned.
Use G16 to reset axial compensation.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.61

Example
G0 X10.00 Y10.00 Z8.00 EP0.707 EQ0.707 ER0.00

The head programmed with TWI can be of any type with a tool holder pointing at the
upper face of the part and with the polar axes in the reference position.

Face Programming
upper EP0.00 EQ0.00

ER1.00

right EP1.00 EQ0.00
ER0.00

rear EP0.00 EQ1.00
ER0.00

left EP-1.00 EQ0.00
ER0.00

front EP0.00 EQ-1.00
ER0.00

Z

Y

X

Figure 3.10 - Parallelepiped to which the tool axis unit vector components refer

In some applications it may be convenient to combine matrix transformations with these
operations to redefine the axes on the various faces and refer them to local origins to
facilitate programming.

See also Orientation with polar axis coordinates, Orientation by roll pitch yaw (RPY),
Orientation by the tool axis unit vector.

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.62

3.8.8 Vectorial tool radius compensation

Syntax EI = <expr>
EJ = <expr>
EK = <expr>

Description Three dimensional tool radius compensation depends on the tool feed in angle. The
direction of compensation can be specified explicitly using the machining surface
normal vector n.
EI à X component of the radius compensation vector
EJ à Y component of the radius compensation vector
EK à Z component of the radius compensation vector

Only the orientation of the vector is taken into account. We can therefore use three
quantities which have the significance of being the cosines which give the direction of
the tool radius compensation.

If EI,EJ,EK are nil, three-dimensional compensation is cancelled.

Example
G1 X10.00 Y10.00 Z8.00 EI0.707 EJ0.00 EJ0.707

Z

X

Y

[EP,EQ,ER]

[EI,EJ,EK]

Figure 3.11 - Information required for three dimensional tool compensation: machining
surface normal vector and tool axis unit vector

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.63

[EI, EJ, EK]

[EP, EQ, ER]

[EI, EJ, EK]

[EP, EQ, ER]

Figure 3.12 - programming example of normal versor [EI,EJ,EK] to the surface and of
the versor [EP,EQ,ER] that describes tool positioning

3.8.9 Automatic determination of the pertinent plane and machining with the axis in
tangency

Syntax PADSID = 0..4

Description Establishes the position of the tool axis in relation to the programmed path.

To indicate the value of PADSID, an auxiliary reference system must be identified with
Y’ axis coinciding with the programmed path, X’ axis square to Y’ and belonging to the
selected interpolation plane, and Z’ axis square to the X’, Y’ plane. The value of
PADSID indicates on which of the four quadrants, determined by axes Z’, Y’, the tool
axis lies.

PADSID = 0 tool length compensation not determined automatically
PADSID = 1 the tool axis remains in quadrant I (at the top right)
PADSID = 2 the tool axis remains in quadrant II (at the top left)
PADSID = 3 the tool axis remains in quadrant III (at the bottom left)
PADSID = 4 the tool axis remains in quadrant IV (at the bottom right)
If PADSID is activated, addresses EA and EB have the following meaning, regardless of
the MVD selector setting:

EB = Angle the tool forms with the normal interpolation plane
EA = Additional rotation around Z axis (normal in relation to the interpolation plane)

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.64

PADSID = 1
EA = 0 EB = 45

Auxiliary reference
system

AB = programmed path

B

1

2

X

Y

Z

A

Z'

X'

(I)(II)

(III) (IV)

Y'

A

B
Z'

X'

Y'

Y'≡AB
X' ∈ G17 (interpolation plane)
X' ⊥ Y'
Z' ⊥ X' e Z' ⊥ Y'

Figura 3.13 -

Certain conditions of indefiniteness or impossibilities may occur when this mode is
used: if the plane selected is G17 and a movement along Z axis has been programmed, it
will be impossible to determine the auxiliary reference system in an univocal way.
If the EA value programmed is different from 0, the tool is turned the specified angle
around the axis in the normal way in relation to the interpolation plane beginning from
the self-determined position. Consequently, the tool axis will no longer be normal in
relation to the machining process (with the exception of singularity with EB at 0 or at 90
degrees).

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.65

PADSID = 1
EA = 0 EB =90

G0 Z100
G0 X50 Y50
G1 Y100

AB = programmed path
Y

X

Z

A

B

X'

Z'
Y'

Figura 3.14 -

Warning When automatic determination of the pertinent plane is activated, addresses EP, EQ and
ER must not be programmed.

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.66

A

B
X

Y
Z

EI 0 EJ 0 EK1
PADSID = 1
EA0 EB90

Figura 3.15 -

Warning If a disk-type milling cutter is used, the vector [EI, EJ, EK] must be specified and the
value of EA must always be zero (EA=0).

Example

PADSID=1
EA0.00 EB45.00
G0 X10.00 Y10.00 Z8.00
G2 X10.00 Y10.00 Z8.00 I40.00 J40.00

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.67

3.8.10 Discriminating between the interchangeable cutting edges of a tool

Syntax ICDSID =0..5

Description Determines which of the available interchangeable cutting edges (e.g.: of a blade) will
follow the programmed path.
It is possible to determine whether the tool is to cut to the left or right of the path, just as
with the 2D tool corrector(G41,G42). If this automation is used (in the table: the tool on
the left/right of the programmed path), the tool radius unit vector must be programmed (
EI, EJ, EK).

Another possibility is that of automatically determining the cutting edge to use as a
function of the material surface normal vector. If this automation is used (in the table:
the tool selects a suitable cutting edge from those available), the tool radius unit vector
must be programmed (EI, EJ, EK).
If, with the three dimensional corrector activated, material cannot be cut with the
selected cutting edge, an error is returned.

ICDSID=0 the centre of the blade follows the programmed path
ICDSID=1 the tool is on the left of the programmed path
ICDSID=2 the tool is on the right of the programmed path
ICDSID=3 the tool uses a suitable cutting edge among those available
ICDSID=4 the tool uses the cutting edge furthest from the tool holder (DEFAULT)
ICDSID=5 the tool uses the cutting edge closest to the tool holder

To avoid damage if an unsuitable cutting edge is selected, when the channel is reset the
cutting edge furthest from the tool holder setting is activated.
When cutting edge closest to the tool holder or blade centre are selected, the length-
wise cutting allowance (SVL) and axial depth (DEA) change sign or are cancelled,
respectively.

Reversibility If one of the following modes is selected:

• ICDSID=0 the centre of the blade follows the programmed path;

• ICDSID=1 the tool is on the left of the programmed path;

• ICDSID=2 the tool is on the right of the programmed path;

...the CNC assumes that the tool is reversible. This means that if the feed commands
required to orient the tool as specified cannot be executed, the system will try using the
opposite orientation.

This behaviour is useful if the spindle has insufficient degrees of freedom and
orientation is automatic or it can be adjusted by matrix transformations. The machining
may be feasible with the selected tool even though a different orientation would have
been preferable in the case of more degrees of freedom.

Note that blade centre mode has no variations, so that the tool is not reversible; use
reversibility only if the tool really is reversible to avoid problems.

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.68

[EP,EQ,ER]

[EI,EJ,EK]

[m,n,o]

DER

dThick/2
(ICDSID=1)

Figure 3.16 -

The disc tool is automatically corrected by half its width (dThick/2), and stays to the left
of the programmed path (direction shown as [m,n,o] vector in figure) when ICDSID=1
has been programmed. Uses the cutting edge furthest from the tool holder.

dThick/2
(ICDSID=1)

[EP,EQ,ER]
[EI,EJ,EK]

[m,n,o]

DER

Figure 3.17 -

The disc tool is automatically corrected by half its width (dThick/2), and stays to the left
of the programmed path (direction shown as [m,n,o] vector in figure) when ICDSID=1
has been programmed. Uses the cutting edge closest to the tool holder.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.69

3.8.11 Machining depth compensation along the tool axis

Syntax DEA <expr>

Type of function Modal

Description DEA expresses the machining depth along the tool axis. The coordinates are
automatically compensated, taking into account this component.

The compensation can be variable along the path of a machining operation. In the
present version the variable depth compensation is not available if the machining
operation, as compensated, is not a straight line or circular arc (in general if the path is
not rectilinear and the tool axis is not perpendicular to the plane of the arc).

Note that to vary the depth without altering the tool feed in point (e.g.: drilling), the
coordinates of the contour milling axes must be programmed to the same positions;
otherwise no movement occurs

Example
EP0.707 EQ0.707 ER0.00 ; tool corrector vector
G0 X10.0 Y10.0 Z8.0 DEA-5.00 ; setting DEA -5.00
DEA5.00 G0 X10.00 Y10.00 ; only modifies the depth
 ; of machining

G17 ; selects the machining plane
G0 X10.0 Y10.0 Z8.0 DEA-5.00
DEA5.00 G0 X10.00 Y10.00

See also Machining allowance management.

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.70

3.8.12 Machining depth compensation along the tool radius

Syntax DER <expr>

Type of function Modal

Description DER expresses the machining depth along the tool radius.
If DER is non-zero, three dimensional tool compensation must be activated
(ECLMOD=1) or the tool radius vector must be described with EI, EJ and EK.

The compensation can be variable along the path of a machining operation. Variable
depth compensation is not available if the machining operation, as compensated, is not a
straight line or circular arc.
Note that to vary the depth without altering the tool feed in point, the coordinates of the
contour milling axes must be programmed to the same positions; otherwise no
movement will occur.

Example
EI0.707 EJ0.707 EK0.00 ; tool correction vector
G0 X10.00 Y10.00 Z8.00 DER-5.00
DER5.00 G0 X10.00 Y10.00

See also Machining allowance management.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.71

3.9 Feed in strategies

3.9.1 Definitions

• Radial in-going (RAM): workpiece in-going mode that includes an approach path
to the tool in a radial direction. It can be very useful for approaching material with a
fluted mill or with a disk-type milling cutter treated like a fluted mill.

• Axial in-going (AAM): workpiece in-going mode that includes an approach path to
the tool in an axial direction. It can be very useful for approaching material with a
fluted mill in order to make a pocket or slot.

G0

G0

AAM

RAM

tool
geometry

G1

G1

Figure 3.18 - Axial and radial feed in

3.9.2 Axial/radial feed in

Syntax EAMMOD =0 |1

Type of function Modal

Description Enables/disables feed in along the axis/radius of the tool.
If EAMMOD=1, whenever G0 is specified the tool is fed into the part radially or axially
according to the values of the variables EAMAAH and EAMRAH.

Syntax EAMFED = <expr>

Type of function Modal

Description Selects the speed at which the tool is approached to the part. If the parameter is not set,
the default value is 0.

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.72

Syntax EAMAAH = <expr>

Type of function Modal

Description Enables axial in-going on to the workpiece if different from zero. The value
programmed establishes the length of the linear section approaching the workpiece , i.e.
the distance from the surface of the top of the tool before it enters the material. The
distance is not influenced by the machining depth selected with DEA, while it is
influenced by the machining allowance in length selected with SVL.
If only this parameter is given a value the feed in is axial.

Syntax EAMRAH = <expr>

Type of function Modal

Description Enables radial in-going on to the workpiece if different from zero. The value
programmed establishes the length of the linear section approaching the workpiece, i.e.
the distance of the tool from the point identified on the surface before it enters the
material.
This dimension is not affected by the machining depth set in DER, although it is affected
by the radial machining allowance set in SVR.
If only this parameter is set, the feed in is radial.
When EAMRAH is non-zero, the tool radius vector must be programmed (EI, EJ, EK).

Example
EAMMOD=1 ; Enables axial/radial feed in
EAMFED=1000 ; sets the feed in speed

EAMAAH=10.00
G0 X10.00 Y10.00 Z8.00 DEA 20.00 ; AXIAL feed

EAMRAH=10.00
G0 X10.00 Y10.00 Z8.00 DER 20.00 ; RADIAL feed

Syntax EAMAIH = <expr>

Type of function Modal

Description The linear feed in path (EAMAAH) can be divided into two sections at different speeds
specified by EAMFED and EAMFAI.
EAMAIH expresses the second linear feed section along the axis of the tool, measured
from the machining surface.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.73

Syntax EAMFAI = <expr>

Type of function Modal

Description The first section is executed at the speed set in EAMFED, while the second section is
executed at the speed set in EAMFAI.

G0 programmed

G0

G1 speed
EAMFED

EAMAAH

G0 programmed

G0

G1 speed
EAMFAI EAMAAH

G1 speed
EAMFED

EAMAIH

EP0 EQ0 ER1
tool axis unit vector

EP0 EQ0 ER1
tool axis unit vector

Figure 3.19 - Axial feed parameters (one/two section approach)

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.74

3.9.3 Axial/radial feed out

Syntax XAMMOD = 0 | 1

Type of function Modal

Description Activated or disactivated axial/radial feed out according to the values of XAMAAH and
XAMRAH.

The feed out mode must be programmed before the feed in.
Once radial or axial feed out has been specified, after the first G0 which specifies the
feed in, every time the system reads a G1, G2 or G3 followed by G0 the tool is fed out
in the specified manner.
XAMMOD=0 specifies tool feed out of the part.

Syntax XAMFED = <expr>

Type of function Modal

Description Selects the speed for the linear feed out section. If the parameter is not specified the
default value of 0 applies.

Syntax XAMAAH =<expr>

Type of function Modal

Description Enables axial out-going from the workpiece if different from zero. The value
programmed establishes the length of the linear section furthering from the workpiece,
or
This dimension is not affected by the machining depth set in DEA, although it is affected
by the axial machining allowance set in SVL.
If only this parameter is set, the feed out is along the tool axis.

Syntax XAMRAH = <expr>

Type of function Modal.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.75

Description Enables radial out-going from the workpiece if different from zero. The value
programmed establishes the length of the linear section furthering from the workpiece,
i.e. the distance of the tool of the tool from the point identified on the surface after
leaving the material. The distance is not influenced by the machining depth selected with
DER, while it is influenced by the machining allowance on the radius selected with SVR.

Out-going takes place along a radius of the tool if only this parameter has been set.
The tool radius versor (EI, EJ, EK) must be programmed when XAMRAH is set at
different values from 0..

Syntax XAMAIH = <expr>

Type of function Modal

Description The linear feed out path (XAMAAH) can be divided into two sections at different
speeds specified by XAMFED and XAMFAI.
XAMAIH expresses the second linear feed section along the axis of the tool, measured
from the machining surface.

Syntax XAMRIH = <expr>

Type of function Modal

Description The linear section for radial out-going from the workpiece programmed with XAMRAH
can be divided into two segments to cover at different speeds, one specified by
XAMFED and the other by XAMFAI.
XAMRIH expresses the length of the first linear section for furthering from the
workpiece along the tool axis, beginning from the surface of the workpiece itself.

Syntax XAMFAI = <expr>

Type of function Modal

Description The first section is executed at the speed set in XAMFED, while the second section is
executed at the speed set in XAMFAI.

Example
XAM and EAM activated %1

F900000

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.76

G58 X100 Z200 ;set auxiliary origin.

EAMMOD =1 ;Activate axial feed in
EAMFED =9000
EAMAAH =100

XAMMOD =1 ;activate axial feed out
XAMFED =9000
XAMAAH =500

D1 ;select tool corrector

EP0 EQ0 ER1 ;orient the tool

VA0 = 0
VA1 = 400

N10 G0 X100 Y100 Z10 ;feed out/in
N20 G2 Y300 R100
N30 G1 X300 Z10
N40 G1 Y100
N50 G1 X100

 VA0=VA0+VA1
N60 SHF[X]=VA0

RPT 10,60,2

XAMMOD = 0 ; feed out
M30

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.77

G0 programmed

G0G1 speed
XAMFEDXAMAHH

G1 speed
XAMFED

EP0 EQ0 ER1
tool axis unit vector

G0 programmed

G0G1 speed
XAMFAIXAMAHH

EP0 EQ0 ER1

XAMAIH

tool axis unit vector

Figure 3.20 - Axial feed out parameters (one/two sections)

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.78

3.9.4 Compensation depending on a section of the tool along the trajectory in its in-
going point

Syntax ESCMOD =ON/OFF

Type of function Modal

Description Activates/deactivates compensation depending on a cutting section of the tool along the
trajectory in its in-going point
The tool section that touches the material depends on the depth programmed for the
machining process (DER).
When ESCMOD is activated, the in-going targets of the machining process are
compensated along the trajectory to suit that section, so that the programmed machining
starting point is on the surface of the tool.
When ESCMOD is activated, the tool radius versor must be described with EI, EJ and
EK and the tool rotation axis and vector that are normal in relation to the surface must
also be normal in relation to the trajectory within a certain tolerance margin.
The trajectory must be linear and the machining section sufficiently long, so as to allow
tool compensation in the in-going point. However, if the machining process consists of a
single block G1 and compensation in the out-going point is activated, the machining
section must be at least as long as the sum of the two compensations.

Figure 3.21 -

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.79

ESC

DERP

[EP,EQ,ER]

[EI,EJ,EK]

[m,n,o]

Figura 3.22 -

Parameters for Compensation along the trajectory depending on the section of a disk-
type cutting tool. P is the machining starting point, ESC is the compensation along the
trajectory, [m,n,o] the infeed versor.

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.80

ESC

DER

[EP,EQ,ER][EI,EJ,EK]

[m,n,o]
P

Figura 3.23 - Compensation along the trajectory depending on the section of a toroidal
tool.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.81

ESC

DER

[EP,EQ,ER][EI,EJ,EK]

[m,n,o]
P

Figure 3.24 -

Compensation along the trajectory depending on the section of a cylindrical tool. The
DER setting is not significant since the tool section is constant (so long as the values are
higher than 0).

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.82

3.9.5 Compensation depending on a section of the tool along the trajectory in its out-
going point

Syntax XSCMOD =ON/OFF

Type of function Modal

Description Activates/deactivates compensation depending on a cutting section of the tool along the
trajectory in its out-going point
When activated, the out-going targets of the machining process are compensated along
the trajectory so that the programmed end of machining point lies on the tool surface,
considering the machining depth specified with DER.

When XSCMOD is activated, the tool radius versor must be described with EI, EJ and
EK. The tool’s axis of rotation must be normal in relation to the trajectory and within a
certain tolerance. The trajectory must be linear and the machining section sufficiently
long, so as to allow tool compensation in the out-going point. However, if the machining
process consists of a single block G1 and compensation on the in-going point is
activated, the machining section must be at least as long as the sum of the two
compensations.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.83

3.10 Feed Control

3.10.1 Modification or Automatic speed control parameters

Syntax FDCDLE= 0|1

Type of function Modal

Description Deceleration Look-Ahead Enable.
FDCDLE =1 Enables the automatic speed control algorithm, which enables
determination of the section feed speed, taking into account the axis movements and
feed rates and the machining operations within a certain number of lines (in the present
version the number of steps cannot be set).

FDCDLE=1 Enable
FDCDLE=0 Disable

Syntax FDCTC0=<expr>
FDCTC1= <expr>
FDCTC2= <expr>
FDCTC3= <expr>

Type of function Modal

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.84

Description

FDCTC0 àà 90° angle Reference deceleration [mm/min]
Sets the almost instantaneous decelerations of the cartesian axes.
Too low values result in rough angles, while too high values affect the
machine's mechanisms, resulting in oscillations and overshoot with sharp
angles.

FDCTC1 àà Arc-line angle Reference Deceleration [°/min]
Sets the almost instantaneous decelerations of the polar axes.

Too low values result in discontinuous contours with rough tangential
axes, whereas too high values result in delays in stopping the vector axis
while passing from curved to straight sections, or to larger radius curves.

FDCTC2 àà 0° Angle Reference Accelerationà[mm/min]
Sets the almost instantaneous accelerations of the cartesian axes .
Too low values result in rough angles, while too high values affect the
machine's mechanisms, resulting in oscillations and overshoot even with
slight angles.

FDCTC3 àà Line-Arc angle Reference Acceleration [°/min]
Sets the almost instantaneous accelerations of the polar axes.
Too low values result in discontinuous contours with rough tangential
axes, whereas too high values result in delays in stopping the vector axis
while passing from curved to straight sections, or to smaller radius
curves.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.85

3.11 Independent axis synchronous/asynchronous positioning

3.11.1 Independent axis synchronous positioning

Syntax POS[Axis] = pos
FA[Axis] = speed

Type of function Self-cancelling

Description The selected axis is positioned not by the channel's main process, but by the process
corresponding to the axis, using the axis's characteristic parameters .
FA[] specifies the positioning speed in mm/min.

Both the positioning and the contour milling axes can be programmed in the same block.
The axes start at the same time, but can reach their targets at different times since each
axis programmed with POS has a different speed and acceleration.
The ISO block is switched when all axes have reached their targets.

Example
G1 X100 Y50 F1000 POS[U]=200 POS[B]=50 FA[U]=500 FA[B]=2000
G0 X0 Y0 ;this block is executed only when
 ;X,Y,A and B have reached their targets

See also Indipendent axis asynchronous positioning.

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.86

3.11.2 Independent axis asynchronous positioning

Syntax POSA[Axis] = pos
FA[Axis] = speed
WAITP[Axis List]

Type of function Self-cancelling

Description The axis is driven not by the main channel process, but by the process corresponding to
the axis.
Both the contour milling and positioning axes can be programmed in the same ISO
block (POSA[]), in this situation the axes all start at the same time and arrive at their
targets at different times.
Using POSA instead of POS the ISO does not wait until the axis has reached its target to
switch.

FA[] sets the positioning speed [mm/min].

WAITP[] enables resynchronisation by waiting for the specified axis/axes to reach their
targets.

Example
G0 X200 POSA[U]=300 POSA[B]=200 FA[U]=150 FA[B]=300

WAITP[B] ; waits for B to reach its target
X300 POSA[B]=300
WAITP[U] ; waits for U to reach its target
POSA[U]=350
X400
WAITP[U,B] ; waits for U and B to reach their targets

See also Indipendent axis asynchronous positioning.

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.87

3.11.3 Prallel spindle orientation

Syntax POSA[S] = pos
WAITP[Axis List]

Type of function Self-cancelling

Description POSA[S] enables orienting the spindle.
The ISO block switches without waiting for the spindle to reach its target.
WAITP[S] forces waiting for positioning to terminate.

Example
G1 B0 F1000 POSA[S] = 45.0
Z200
X0 Y0
WAITP[S]

See also Spindle orientation, On-the-fly spindle orientation.

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.88

3.12 Modifying axis parameters

The parameters that characterize the dynamics of an axis are set up in the machine
parameters ([Parameters] [System] [Axes Parameters]).
The following instructions allow these parameters to be modified straight from the
PartProgram

3.12.1 Following error

Syntax FWR[Axis] = 0|1

Type of function Modal

Description Enables/disables synchronously following error monitoring.
Axis Axis name.

Mode: 0 Disables following error monitoring.

Mode: 1 Enables following error monitoring.

Example
FWR[X] = 0
FWR[X] = 1

3.12.2 Axis acceleration time

Syntax ACC[Axis] = <expr>

Type of function Modal

Description Modifies the acceleration of the specified axis synchronously.
The set acceleration expresses the time [in seconds] required to reach the maximum
speed.

Example
ACC[X] = 1.2

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.89

3.12.3 Axis deceleration time

Syntax DEC[Axis] = expr

Type of function Modal

Description Modifies the deceleration of the specified axis synchronously.
The expression gives the time [in seconds] required to complete a deceleration at the
maximum delta(speed)

Example
DEC[X] = 1.5

3.12.4 Axis emergency deceleration time

Syntax DEE[Axis] = <expr>

Type of functon Modal

Description Modifies the emergency deceleration of the specified axis synchronously.
The expression gives the time in seconds required to complete a deceleration at the
maximum delta(speed) in an emergency.

Example
DEE[X] = 1.5

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.90

3.12.5 Axis maximum speed

Syntax VEL[Axis] =<expr>

Type of function Modal

Description Modifies the maximum speed in mm/min of the specified axis synchronously.

Example
VEL[X] = 1000

ACS[x]

DEC[x]

DEE[x]

VEL[x]

V

t

Figure 3.25 - Axis characteristic parameters

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.91

3.12.6 Axis ramp to S

Syntax ACS[Axis] =<expr>

Type of function Modal

Description Synchronously sets the parameter which determines the ramp to S of the specified axis.
The ramp time is the time required to accelerate to the maximum.
The ramp to S delay time must not exceed half the acceleration time.

Example
ACS[X] = 1.5

Vmax

t

t

Acc

S ramp
time

acceleration
time

Figure 3.26 - Ramp to S

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.92

3.12.7 Axis jerk settings

Syntax JRK[Axis] =<expr>

Type of function Modal.

Description Sets up the parameter that characterizes the variation of the acceleration (JERK) of the
associated axis in the synchronized mode. The value entered indicates the acceleration
variation in the unit of time, and is expressed in mm/sec3.

Example
JRK[X] = 22500

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.93

3.13 Modification of the interpolation parameters

The parameters that characterize the interpolation dynamics are set up in the machine
parameters ([Parameters][System][Channel Parameters]).
The following instructions allow these parameters to be modified straight from the
PartProgram

3.13.1 Interpolation acceleration time setting

Syntax ACCTRJ =<expr>

Type of function Modal

Description Modifies the characteristic acceleration of the channel interpolations in the synchronous
mode. The acceleration set expresses the time [in seconds] required to reach the
maximum speed.

Example ACCTRJ =1 . 2>

3.13.2 Interpolation deceleration time setting

Syntax DECTRJ =<expr>

Type of function Modal

Description Modifies the characteristic deceleration of the channel interpolations in the synchronous
mode. The expression set expresses the time [in seconds] required to make a
deceleration equal to the maximum speed delta.

Example DECTRJ = 1 . 2>

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.94

3.13.3 Maximum interpolation speed setting

Syntax VELTRJ =<expr>

Type of function Modal

Description Modifies the value in mm/min or the maximum channel interpolation speed in the
synchronous mode.

Example VELTRJ = 1000

3.13.4 Interpolation ‘S’ ramp time setting

Syntax ACSTRJ =<expr>

Type of function Modal

Description Sets up the parameter that characterizes the channel’s interpolation ‘S’ ramp in the
synchronized mode. The ramp time defines the time that the acceleration takes to reach
the maximum programmed time. The ‘S’ ramp delay value must not be more than half
the acceleration time.

Example ACS [X] . 1 . 5

DP Advanced Programming

Esa/Gv 91752.DP.1.GB 3.95

3.13.5 Jerk setting during interpolation

Syntax JRKTRJ =<expr>

Type of function Modal

Description Sets up the parameter that characterizes the variation of the acceleration (JERK) during
a channel interpolation. The value entered indicates the acceleration variation in the unit
of time, and is expressed in mm/sec3.

Example JRKTRK = 22500

END OF CHAPTER

Advanced Programming DP

91752.DP.1.GB Esa/Gv3.96

DP Fixed Cycle Systems (FCS)

Esa/Gv 91752.DP.1.GB 4.1

4 Fixed Cycle Systems (FCS)

Definition The Fixed Cycle Systems comprise the preparatory functions G from G81 to G89 which
enable the definition of technical processing parameters for drilling, tapping and boring.
The fixed cycle is activated in the first ISO block which evaluates the feed target (X, Y).
Macros G192-G193 are supplied define the geometry (with the cartesian points at which
the technological process is performed).
G192: Hole grid.
G193: Holes on a circular arc.

Fixed Cycle Systems (FCS) DP

91752.DP.1.GB Esa/Gv4.2

4.1 G192 macro Generation of a grid of points

Syntax G192 X<> Y<> IA<> JA<> NRA<> IB<> JB<> NRB<>

G192 Fixed Cycle Interface:

X P0x coordinate

Y P0y coordinate

IA Line: X increment component

JA Line: Y increment component

NRA Line: Number of holes

IB Column: X increment component

JB Column: Y increment component

NRB Column: Number of holes

Type of function Self-cancelling

Description Defines geometry for grid points.
The parameters transferred in the call have the following characteristics:

IA: if undeclared IA = 0
JA: if undeclared JA = 0
NRA: if undeclared, NRA = 1
IB: if undeclared IB = 0
JB: if undeclared JB = 0
NRB: if undeclared NRB = 1

Example
Drilling, centring %1181
N10 G0 X0 Y0 Z200
(Technological parameter definition)
N20 G81 DR125 DE100 DH125 FW150 FR15000
(Fixed Drilling Cycle Activation)
N30 G192 X-25 Y-25 IA10 JA5 NRA5 IB5 JB10 NRB6
N50 G80
N60 M10
N70 M30
N80 END

DP Fixed Cycle Systems (FCS)

Esa/Gv 91752.DP.1.GB 4.3

G192 Macro
 (hole grid)

Y+

X+

< NRB >=4

< NRA >=6

< IA > = 5.00

< JB >= 5.00

X (P0x co-ordinate)

Y
(P0y co-ordinate)

G192 X<> Y<> IA<> JA<> NRA<> IB<> JB <> NRB<>
X P0x Co-ordinate
Y P0y Co-ordinate
IA Line: X increment component
JA Line: Y increment component
NRA Line: Number of holes
IB Column: X increment component
JB Column: Y increment component
NRB Column: Number of holes

In this case:
G192 X 10.00 Y 30.00 IA 5.00 NRA 6 JB 5.00 NRB 4
JA: if undeclared JA = 0
IB: if undeclared JB = 0

30.00

10.00

Figura 4.1 - Profile executed by G192 Macro

Fixed Cycle Systems (FCS) DP

91752.DP.1.GB Esa/Gv4.4

G192 Macro
(Hole grid)

Y+

X+

< IA >= 5.00

< JA >= 1.50

< IB >= 1.50

< JB>= 5.00

< NRB > = 4

< NRA > = 6

X (P0x co-ordinate)

Y
(P0y co-ordinate)

G192 X<> Y<> IA<> JA<> NRA<> IB<> JB <> NRB<>
 X P0x Co-ordinate
 Y P0y Co-ordinate
 IA Line: X increment component
JA Line: Y increment component
NRA Line: Number of holes
IB Column: X increment component
JB Column: Y increment component
NRB Column: Number of holes

In this case:
G192 X 10.00 Y 30.00 IA 5.00 JA 1.50 NRA 6 JB 1.50 JB 5.00 NRB 4

10.00

30.00

Figura 4.2 - Profile executed by G192 Macro

DP Fixed Cycle Systems (FCS)

Esa/Gv 91752.DP.1.GB 4.5

4.2 G193 macro - generation of points distributed along a circumference arc

Syntax G193 X<> Y<> AR<> I<> J<> NR<>

G193 Fixed Cycle interface:

X P0x coordinate

Y P0y coordinate

AR Angle between two holes

I Centre Cx

J Centre Cy

NR Number of holes

Type of function Self-cancelling

Description Defines the geometry required to generate points distributed on an arc.
The parameters transferred in the call have the following characteristics:

AR: if undeclared AR = 360
I: compulsory
J: compulsory
NR: if undeclared NR = 1

Example
Drilling, centring %1181
N10 G0 X0 Y0 Z200
(Technological parameter definition)
N20 G81 DR125 DE100 DH125 FW150 FR15000
(Fixed Drilling Cycle Activation)
N30 G193 X0 Y0 AR90 I100 J0 NR3
N50 G80
N60 M10
N70 M30
N80 END

Fixed Cycle Systems (FCS) DP

91752.DP.1.GB Esa/Gv4.6

G193 Macro
 (Holes on a circular arc)

Y+

X+I

J

AR

NR = 5

P0x
Co-ordinate

P0y
Co-ordinate

G193 X< > Y< > AR< > I< > J< > NR< >

X P0x Co-ordinate
Y P0y Co-ordinate
AR Angle between two holes (if positive drilling is anticlockwise; if negative drilling is
 clockwise).
I Centre Cx
J Centre Cy
NR Number of holes

In this case:
G193 X 45.00 Y 50.00 AR -20.00 I 40.00 J 30.00 NR 5
AR: if undeclared AR = 360
NR: if undeclared NR = 1

50.00

30.00

40.00
45.00

20.00

Figura 4.3 - Profile executed by G193 Macro

DP Fixed Cycle Systems (FCS)

Esa/Gv 91752.DP.1.GB 4.7

4.2.1 G81 Fixed Cycle: drilling

Syntax G81 DR<> DE<> DH<> FW<> FR<> WE<>

G81 Fixed Cycle interface:

DR (VA23) Position Z reached in fast mode (Fast mode position)

DE (VA3) End of hole position Z reached in Feed (End position)

DH (VA4) Home return position Z (Home position)

FW (VA5) Z axis work speed (Feed Work)

FR (VA6) Feed return speed (Feed Return)

WE (VA7) End of hole wait time (Wait End)

Type of function Modal

Description Defines the technological parameters for drilling.
The function G80 (applied on PP line only), or a G0 Z feed (position) cancel G81 mode
explicitly.
The parameters transferred in the call have the following characteristics:

DR: modal
DE: modal
DH: if undeclared, DH = DR
FW: modal
FR: if undeclared, max. speed (machine data).
WE: if undeclared, WE = 0

Example
Drilling, centring %1181

N10 G0 X0 Y0 Z200
(Technological parameter definition)
N20 G81 DR125 DE100 DH125 FW150 FR15000
(Fixed Drilling Cycle Activation)
(P0x, P0y = 10, 10)
(P1x, P1y = 40, 50)
N30 X10 Y10
N40 X40 Y50
N50 G80 (applied on line only)
N60 M10
N70 M30
N80 END

Fixed Cycle Systems (FCS) DP

91752.DP.1.GB Esa/Gv4.8

P0x, P0y P1x, P1y

1

2

3 4

5

1) Positioning af axes X and Y (P0x, P0y); first hole.

2) Rapid Z descent to machining start positionDR .

3) Z end of hole position reached in FeedDE.

4) Z home return positionDH.

5) Positioning of axes X and Y (P1x, P1y).

G81 Fixed Cycle: Centring and Drilling

Figura 4.4 - Profile executed by fixed cycle G81

DP Fixed Cycle Systems (FCS)

Esa/Gv 91752.DP.1.GB 4.9

4.2.2 G83 Fixed Cycle: drilling with swarf discharge or breaking

Syntax G83 DR<> DE<> DH<> FW<> FR<> WE<> NI<> WI<>

G83 Fixed Cycle interface:

DR (VA23) Position Z reached in fast mode (Fast mode position)

DE (VA3) End of hole position Z reached in Feed (End position)

DH (VA4) Home return dimension Z (Home position)

FW (VA5) Z axis work speed (Feed Work)

FR (VA6) Feed return speed (Feed Return)

WE (VA7) End of hole wait time (Wait End)

NI (VA19) Number of increments (Number Increment)

WI (VA23) Wait time between increments (Wait Increment)

Defines the technological parameters to use for boring with swarf unloading or breaking

Type of function Modal

Description Defines the technological parameters used in drilling
The function G80 (applied on PP line only), or a G0 Z feed (position) cancel G83 mode
explicitly.
Parameters transferred in the call are self-cancelling.
Parameter DE determines the hole depth and DH defines the pre-set position of axis Z to
exit the workpiece.
NI determines the number of processing phases. The depth value is taken and divided by
the number in NI, to calculate the increment automatically for each processing phase.
The first drilling phase is then carried out out on the first point calculated for axis Z. At
this point return is activated in fast mode to the position specified in DR .
Axis Z restarts at high speed to reach a new point at a specific distance from the
previous one, minus 1mm. From this point, using a G1 type feed, drilling is resumed up
to the new point calculated automatically by the cycle.
These phases are repeated until the position specified in DE is reached.

The parameters transferred in the call have the following characteristics:
DR: modal
DE: modal
DH: if undeclared, DH = DR
FW: modal
FR: if undeclared, max. speed (machine data).
WE: if undeclared, WE = 0
NI: modal
WI: if undeclared, WI = 0

Fixed Cycle Systems (FCS) DP

91752.DP.1.GB Esa/Gv4.10

Example Deep drilling divided into 5 phases.
Drilling test in sections %1183

N10 G0 X0 Y0 Z200
(Technological parameter definition)
N20 G83 DR125 DE100 DH125 FW150 FR15000 NI5
(Fixed Drilling Cycle Activation)
(P0x, P0y = 10, 10)
(P1x, P1y = 40, 50)
N30 X10 Y10
N40 X40 Y50
N50 G80(applied on line only)
N60 M10
N70 M30
N80 END

DP Fixed Cycle Systems (FCS)

Esa/Gv 91752.DP.1.GB 4.11

G83 Fixed Cycle: drilling with swarf discharge or breaking

- With swarf discharge with WE other than 0.

- With swarf breaking with WE = 0

1

2

3

4

5

1) Positioning of axes X and Y (hole axis).
2) Positioning of Z in fast mode DR.
3-4-5) Programmed number of increment NI.
6) Programmed end of hole position DE, with programmed wait time WE.
At the end of each increment, the tool is recalled in fast mode to the position
set in DH (unless DH is programmed DH=DR) to return in Feed mode at the
previously machine depth minus value
< a > set at 1mm.

a

a

DR in this case DH=DR.

DE

WE

NI number of increments
(in this case = 3)

1

2

3

4

5

DR in this case DH=DR.

1) Positioning of axes X and Y (hole axis).
2) Positioning of Z in fast mode DR.
3-4-5) Programmed number of increment NI.
 Increments 3 and 4 at the same time as programmed wait time WI.
5) Programmed end of hole position DE, with programmed wait
 time WE.

WE

WI

WI

DE

NI number of increments
(in this case = 3)

 WI not programmed

Figura 4.5 - Profile executed by fixed cycle G83

Fixed Cycle Systems (FCS) DP

91752.DP.1.GB Esa/Gv4.12

4.2.3 G84 Fixed Cycle: Tapping

Syntax G84 DR<> DH<> DE<> RW<> RR<> WE<> P<>

G84 Fixed Cycle Interface:

DR (VA23) Position Z reached in fast mode (Fast mode position)

DE (VA3) End of hole position Z reached in Feed (End position)

DH (VA4) Home return position Z (Home position)

DW (VA5) Z axis work speed (Revolution Work)

RR (VA6) Feed return speed (Revolution Return)

WE (VA7) End of hole wait time (Wait End)

P (VA19) Pitch (Pitch)

Type of function Modal

Description Performs fixed tapping cycle.
The function G80 (applied on PP line only), or a G0 Z feed (dimension) cancel G84
mode explicitly.
Parameter DE identifies the tapping end position.
Once hole positions X and Y are established as well as the workpiece approach distance,
the work speed for axis Z RW must be defined; in fact a positive value sets clockwise
spindle rotation and negative sets anti-clockwise rotation by entering the minus sign (-)
in front of the speed RW.
Once the tapping end position is reached, a timed shutdown is activated and then spindle
rotation is reversed to return to the point as specified in parameter DH at the new speed
set in RH.

The parameters transferred in the call have the following characteristics:
DR: modal
DE: modal
DH: if undeclared, DH = DR
RW: modal
RR: if undeclared, value RW
WE: if undeclared, WE = 0
P modal

Example Hole tapping with clockwise spindle rotation on entry, and anti-clockwise rotation on
exit; therefore RW is positive.

TAPPING test %1184
N10 G0 X0 Y0 Z200
(Technological parameter definition)
N20 G84 DR125 DE100 DH125 RW150 RR15000 P0.75
(Fixed Drilling Cycle Activation)
(P0x, P0y = 10, 10)
(P1x, P1y = 40, 50)
N30 X10 Y10
N40 X40 Y50
N50 G80(applied on line only)
N60 M10
N70 M30
N80 END

DP Fixed Cycle Systems (FCS)

Esa/Gv 91752.DP.1.GB 4.13

4.2.4 G86 Fixed Cycle: Boring

Syntax G86 DR<> DE<> DH<> FW<> FR<> WE<>

G86 Fixed Cycle interface:

DR (VA23) Position Z reached in fast mode (Fast mode position)

DE (VA3) End of hole position Z reached in Feed (End position)

DH (VA4) Home return position Z (Home position)

FW (VA5) Z axis work speed (Feed Work)

FR (VA6) Feed return speed (Feed Return)

WE (VA7) End of hole wait time (Wait End)

Type of function Modal

Description Performs fixed boring cycle with wait at end of hole and return with spindle stationary.

The function G80 (applied on PP line only), or a G0 Z feed (position) cancel G86 mode
explicitly.

DR: modal
DE: modal
DH: if undeclared, DH = DR
FW: modal
FR: if undeclared, max. speed (machine data
WE: if undeclared, WE = 0

Example Two holes are drilled, followed by boring by means of G86 fixed cycle

BORING WITH STATIONARY SPINDLE RETURN test %1185
N10 G0 X0 Y0 Z200
(Technological parameter definition)
N20 G86 DR125 DE100 DH125 FW150 FR15000
(Fixed Drilling Cycle Activation)
(P0x, P0y = 10, 10)
(P1x, P1y = 40, 50)
N30 X10 Y10
N40 X40 Y50
N50 G80(applied on line only)
N60 M10
N70 M30
N80 END

Fixed Cycle Systems (FCS) DP

91752.DP.1.GB Esa/Gv4.14

4.2.5 G88 Fixed Cycle: drilling cavity walls

Syntax G88 DRA<> DEA<> DH<> DRB<> DEB<> FW<> FR<> WE<>

G88 Fixed Cycle Interface:

DRA (VA23) First wall position Z reached in fast mode (PtoA Fast mode position)

DEA (VA3) End of hole position Z reached in Feed (PtoA end position)

DH (VA4) Home return dimension Z (Home position)

DRB (VA23) Second wall position Z reached in fast
mode

(Fast mode position PtoB)

DEB (VA3) End of hole position Z reached in Feed (End position PtoB)

FW (VA5) Z axis work speed (Feed Work)

FR (VA6) Feed return speed (Feed Return)

WE (VA7) End of hole wait time (Wait End)

Type of function Modal

Description Performs fixed drilling cycle on cavity walls.
The function G80 (applied on PP line only), or a G0 Z feed (position) cancel G88 mode
explicitly.
Parameters transferred in the call are self-cancelling.
Following approach, the first phase is started by drilling the first wall at the speed set in
FW to the depth specified by DEA.
On completion of the first drilling phase, axis Z is activated in fast mode to reach the
position set in DRB. Following this, the second wall is drilled at the speed set in FW,
until the position set in DEB is reached.
Axis Z is then withdrawn at high speed to the position set in DH.

Example Drilling on two cavity walls.

Drilling cavity walls:%1188
N10 G0 X0 Y0 Z200
(Technological parameter definition)
N20 G88 DRA125 DEA100 DH125 DRB80 DEB60 FW150 FR15000
(Fixed Drilling Cycle Activation)
(P0x, P0y = 10, 10)
(P1x, P1y = 40, 50)
N30 X10 Y10
N40 X40 Y50
N50 G80(applied on line only)
N60 M10
N70 M30
N80 END

DP Fixed Cycle Systems (FCS)

Esa/Gv 91752.DP.1.GB 4.15

G88 Fixed cycle: (drilling spaced walls)

1

2

3

4

1) Axis Z approach in fast mode to position DRA.
2) Drilling to first wall to position DEA at speed FW.
3) Z fast mode to position DRB.
4) Drilling of second wall to posizion DEB at speed FW.
5) After wait time WE, return at speed FR to position DH.

DRA

DEA

DRB

DEB
WE

DH5

G88 DRA<> DEA<> DH<> DRB<> DEB<> FW<> FR<> WE<>

Figura 4.6 - Profile executed by G88 fixed cycle

Fixed Cycle Systems (FCS) DP

91752.DP.1.GB Esa/Gv4.16

4.2.6 G133 Fixed cycle: Thread-cutting

Syntax G133 X<exp> Z<exp> K<exp> P<exp> H<exp> A<exp> B<exp> S<exp> L<exp>
T<exp> F<exp> V<exp> R<exp>

or:

G133 U<exp> Z<exp> K<exp> P<exp> H<exp> A<exp> B<exp> S<exp> L<exp>
T<exp> F<exp> V<exp> R<exp>

G133 Fixed Cycle interface:

DP Fixed Cycle Systems (FCS)

Esa/Gv 91752.DP.1.GB 4.17

Z [VA1] Pf coordinate, Z axis

X or U [VA0] Pf coordinate, X or U axis

K [VA2] Thread-cutting pitch

P [VA3] Thread-cutting depth (X Machining start pos. - X Machining end
pos.)

H [VA4] Return height (Partial return pos. X - Coord Pf X)

A [VA5] Angle of attack

B [VA6] Angle

(if 0: plunge threading)

(if other than zero: chipping)

S [VA7] Number of roughing runs

L [VA8] Number of polishing runs

T [VA9] Type

(if 0: Constant Depth)

(if 1: Constant Removal Area)

F [VA10] X axis fast mode

V [VA11] Z axis fast mode

R [VA15] Bevel exit

(if 0: through exit)

(if 0.1: pull-out exit)

(if greater than 0.5: bevel exit pitch)

W Additional depth after the last polishing run. This is added to the target
dimension of the radial axis (X or U) in order to make a further run after
polishing.

* [VA12] X axis, Pi coordinate

* [VA13] Z axis, Pi coordinate

* [VA14] X axis programming mode (0: radial, 1: diametric)

* [VA16] Selected Plane

(if 0: Lathe Programming plane ZX)

(if 1: Lathe Programming plane ZU)
*: registers used internally and not available for the fixed cycle call.

Description Performs fixed thread-cutting cycle (CHIPPING, PLUNGE-THREADING) in the case
of bevel or pull-out exit, coupling a tapered thread with a length equal to the window set
with parameter R.
Function G80 cancels G133 mode explicitly.
Parameters transferred in the call are compulsory if G133 is displayed on the line
(an alarm is activated if any are missing), the order in the list is not important.
However they are modal if G133 is not displayed and if it is still active (G80 or feed
function G has not been performed).

The parameters to be used in the fixed cycle are illustrated in the figures.

Fixed Cycle Systems (FCS) DP

91752.DP.1.GB Esa/Gv4.18

The parameters regarding the positions of axis X are modified accordingly if the axis is
programmed diametrically, for example in this case depth P, based on the difference
between machining start point X and machining end point X, is halved automatically.

 machining

H

Partial return
position

Position X:
end point

G1 speed V

G1 speed F

(X,Z)

X

Z

K

P

Position X
machining end point

Position X
machining start point

X

Z

Figura 4.7 - Geometrical processing parameters

The figures illustrate the various types of processing according to pull-out exit
parameter R.

DP Fixed Cycle Systems (FCS)

Esa/Gv 91752.DP.1.GB 4.19

Cylindrical thread-cutting
Through exit

G133 R 0.0

Figura 4.8 - Thread-cutting: through exit

Cylindrical thread-cutting
pull-out exit

G133 R 0.1

Figura 4.9 - Thread-cutting: pull-out exit

Fixed Cycle Systems (FCS) DP

91752.DP.1.GB Esa/Gv4.20

Cylindrical thread-cutting
Bevel exit

G133 R 0.7

Figura 4.10 - Thread-cutting: bevel exit

The figures illustrate plung threading or chipping processes according to settings in
parameter B.

Plunge threading:
G133 B0.0 ...

Figura 4.11 - Plunge threading

DP Fixed Cycle Systems (FCS)

Esa/Gv 91752.DP.1.GB 4.21

Chipping:
es.: G133 B 30.0 T0.0 ...

B

Figura 4.12 - Thread-cutting: typical chipping parameter

The figures illustrate constant area or depth processing according to the settings in
parameter T.

Fixed Cycle Systems (FCS) DP

91752.DP.1.GB Esa/Gv4.22

K=P * tg(B/2)

B/2

P

K/S

P/S

Constant area

from which

in general

dA

B/2

P

 dA

A0

dA

h0

h1

h2
h3

A0=h0*h0tg(B/2)

A1=h1*h1tg(B/2)

Atot/n=A0

P*(Ptg(B/2))/n=h0*h0tg(B/2)

h0=P/sqrt(n)

dA=A-A0=A0

h1
2-h0

2=h0
2 h1=sqrt(2)h0

hi=sqrt(i+1)h0

Figura 4.13 - Constant area (above) and constant depth type thread-cutting (below)

DP Fixed Cycle Systems (FCS)

Esa/Gv 91752.DP.1.GB 4.23

Example 3-principle thread-cutting %100
N100 G1 X<start position> Z<start position> F<>
N200 G133 X<> Z<> K<> P<> H<> A 0 B<> S<> L<> T<> F<> V<>
N300 A120
N400 A240
N500 G1 X<outside dimensions> Z<outside dimensions> F<>

END OF CHAPTER

Fixed Cycle Systems (FCS) DP

91752.DP.1.GB Esa/Gv4.24

DP Tool parameters

Esa/Gv 91752.DP.1.GB 5.1

5 Tool parameters

5.1 Definitions

Machining center Also Machine tool. Machine that includes one or more fixing devices able to clamp the
same number of workpieces during the machining phase and one or more devices that
actually carry out the machining operations by removing material from the workpieces.

Machining centers are used for milling or turning, depending on whether the tool or
workpiece turns to remove the material from this latter.

Paraxial machine tool This tool machines workpieces moved in a paraxial way and includes one or more
heads.

Paraxial table Table with fixing devices able to clamp and locate a workpiece. It is sometimes driven in
the paraxial mode. It is generally installed on milling machines only.

For mechanical reasons, the table sometimes provides movement along some of the
Cartesian axes and the paraxial machining unit along the remaining ones.

Head Kinematical device able to position a single spindle for tool changes or several
toolholders in space, and to transmit rotational movement in order to remove material
from the workpiece during the machining process.

It may have one or more degrees of freedom, or none.

When the part being positioned is a single spindle, the actual head itself is often called
spindle.

Polar table Kinematical device able to position in space a surface that locates and clamps a
workpiece, provided with a sufficient number of degrees of freedom.

For mechanical reasons, the polar table sometimes provides some of the degrees of
freedom and the head the remaining degrees required.

Tool change device Device able to transmit rotational movement to a coupling cone for tool changing that,
in turn, is able to transmit the movement to one or more toolholders.

Tool change cone Device able to connect one or more tools clamped by means of toolholders to a spindle
for tool changing purposes, and to transmit the rotational drive of the spindle to the
former.

The coupling cones with the relative toolholders can generally be interchanged with
each other and are matched to the spindle to suit the machining operations required.

Tool parameters DP

91752.DP.1.GB Esa/Gv5.2

Toolholder Device able to clamp a single tool and to transmit the rotational movement of the spindle
to it. Drive transmission often makes use of a mechanism that misaligns the tool to allow
multiple machining operations to be carried out in combination with other tools (the
entire toolholder unit is often called multiple toolholder), or tilts it so that tilted
machining operations can be carried out (the entire toolholder unit is often called tilting
head).

Tool with one or more
cutters

Device able to remove material from the workpiece during the machining operation by
means of one or more cutters that operate either individually or at the same time and that
receive a rotational movement (milling machine) or that remain in a fixed position while
the workpiece turns round them (lathe).

Tool or Cutter Device able to remove material from the workpiece during the machining operation. The
cutter is the final part of the power train that begins with the paraxial machining unit
and is the true cutter that generally gives rise to a machining process with the
programmed characteristics.

Tool is the same as the cutting edge of a tool when there is only one.

Machining process Controlled removal of material from a workpiece carried out by the cutters of a tool in
order to produce a surface with the required characteristics.

Workpiece Part temporarily fixed to a table so that it can be machined by removal of material.

DP Tool parameters

Esa/Gv 91752.DP.1.GB 5.3

5.2 ER (Entity Relationship) diagram of the entities of a machining center of
which the geometry and power train are controlled

5.2.1 Key

The annotation may not comply with the drawing standards.

Association Association

1 a 1 1 a N

Association Association

1 a 1
od 1 a 0

1 ad N
od 1 a 0

Entity

Attribute

IIdentifier

Specialization

Association

Association

M ad N

Figure 5.1 – Key to the symbols in ER (Entity Relationship) diagrams

Tool parameters DP

91752.DP.1.GB Esa/Gv5.4

5.2.2 Diagram

Machining
center

Paraxial
machining

unit

Coupling cone for
tool change

Toolholder

Tool
with

several
cutters

Paraxial
table

Polar tableHead

Rec
ainstallat
o

Possied
e

Possied
e

Possied
e

Tool change
device

Possied
e

Tool or
cutterPossied

e

Possied
e

Possied
e

Coupled

Work
piece

Working

Su
l

Effettu
a

Tien
ebloccat
o

Keeps
clampe

d

Possied
e

Various technological
characteristics

depending on the
manufacturer

Axes origin, axes de-deinition

Various technological
characteristics depending on the

manufacturer

Axes origin, axes de-definition

Various technological
characteristics

depending on the
manufacturer

Origin workpiece

Working data technology
orientation.

life and wear

Status(faul,right-
handed,left-handed, infeed

)

Dimensional
dataMTL-

Code

THD-
Code

Tecnologia (RPM Max,
...)

Geometri
a

Spindle identifier for tool change

Tecnology (RPM pulling along Min/
Max,)

kinematics, positioning actuators

spindle
identifi
er for
tool

change

kinematics,p
ositioning
actuators

Rec
ainstallat
o

Figure 5.2 – ER diagram of the entities of a machining center of which the geometry
and power train are controlled

DP Tool parameters

Esa/Gv 91752.DP.1.GB 5.5

5.3 Other definitions

Pivot Pivots are the rotation centers of the kinematical motions that position the tool.

The terminal kinematical device controls tool tip movement while the non-terminal ones
control the pivot of the next kinematical device.

When there are two kinematical devices for example, the first is the one that controls the
movement of the pivot of the second one while the second and last control the
movement of the tool tip.

Tool Center Point
Programming

Tool Center Point Programming (abbreviated as TCP in the text) is one of the
denominations commonly used for the type of management that allows the point at the
top of the tool that touches the material and the machining angles to be directly
programmed. All the complex operations required to establish the positions of the
kinematical devices are carried out by the CNC.

The main advantages are simple programming, while the machining operations do not
depend on the tool or the power train of the machine.

Tool parameters DP

91752.DP.1.GB Esa/Gv5.6

5.4 Head descriptor

This is selected from a table by means of the TWI command.

5.4.1 Data structure

Property of a head
Structure array identifier

twi[n]

It is advisable to specify the actual identifier in capital letters as structure label.

DP Tool parameters

Esa/Gv 91752.DP.1.GB 5.7

5.4.2 Description of the geometry and actuators

constant in
Shared.H

field of the
structure

XCLTWIDATA

Parameter in
defcn

Meaning

TWI_KINE TWI_KINEMAT
ICS_CLASS
Kine

byte yKine Type of kinematical device:

• 1 = ROTARY_HEAD

• 2 = FORK_ROTARY_HEAD

• 3 = OBLIQUE_AXIS_ROTARY_HEAD

• 4 = ROTARY_TABLE_AND_TILT_HEAD

• 5 = FORK_TABLE
TWI_MINRPM ULONG

ulMinRPM;
dword
dwMinRPM

Minimum rpm rate

TWI_MAXRPM ULONG
ulMaxRPM;

dword
dwMaxRPM

Maximum rpm rate

TWI_CCW BOOLEAN
bCCW;

byte yCCW Normal left-hand rotation direction

type:ROTARY_
HEAD_DATA

RH_X0 double dX0 double dX First pivot X coordinate (ref. head zero)
RH_Y0 double dY0 double dY First pivot Y coordinate (ref. head zero)
RH_Z0 double dZ0 double dZ First pivot Z coordinate (ref. head zero)
RH_ORIENT XCL_ORIENTA

TION Orient
byte yOrient Z axis head positioning:

• 6 = X+

• 4 = X-

• 8 = Y+

• 2 = Y-

• 9 = Z+

• 1 = Z
RH_EC double Dec double dEC Rotation around Z axis
RH_ECREV BOOLEAN

bECRev
byte bECRev Reversal towards actuator of rotation around Z

axis.
RH_ECAX XCL_DRIVER

ECAx
byte yECAx Actuator of rotation around Z axis, chosen from

amongst:

• 0 = NC

• 7 = A

• 8 = B

• 9 = C

• 10 = Spindle Axis
type: FORK_
ROTARY_
HEAD_DATA

Tool parameters DP

91752.DP.1.GB Esa/Gv5.8

constant in
Shared.H

field of the
structure

XCLTWIDATA

Parameter in
defcn

Meaning

FRH_X0 double dX0 double dX First pivot X coordinate (ref. head zero)
FRH_Y0 double dY0 double dY First pivot Y coordinate (ref. head zero)
FRH_Z0 double dZ0 double dZ First pivot Z coordinate (ref. head zero)
FRH_ORIENT XCL_ORIENTA

TION Orient
byte yOrient Z axis head positioning:

• 6 = X+

• 4 = X-

• 8 = Y+

• 2 = Y-

• 9 = Z+

• 1 = Z
FRH_EC double dEC double dEC Rotation around Z axis
FRH_ECREV BOOLEAN

bECRev
byte bECRev Reversal towards actuator of rotation around Z

axis.
FRH_ECAX XCL_DRIVER

ECAx
byte yECAx Actuator of rotation around Z axis, chosen from

amongst:

• 0 = NC

• 7 = A

• 8 = B

• 9 = C

• 10 = Spindle Axis
FRH_X1 double dX1 double dXx Second pivot X’ coordinate
FRH_Y1 double dY1 double dYy Second pivot Y’ coordinate
FRH_EB double dEB double dEB Rotation around Y axis
FRH_EBREV BOOLEAN

bEBRev
byte bEBRev Reversal towards actuator of rotation around Y

axis.
FRH_EBAX XCL_DRIVER

EBAx
byte yEBAx Actuator of rotation around Y axis, chosen from

amongst:

• 0 = NC

• 7 = A

• 8 = B

• 9 = C

• 10 = Spindle Axis
FRH_X2 double dX2 double dXX Toolholder X” coordinate.

double _dUnused -- -
FRH_Z2 double dZ2 double dZZ Toolholder Z” coordinate.

These descriptors can be used for three-dimensional tool compensation in order to
automatically calculate the position of the Cartesian axes depending on the machining
coordinates, the position of the angular spindle actuators and toolholder geometry.

DP Tool parameters

Esa/Gv 91752.DP.1.GB 5.9

When an actuator is not connected, checks are made during the machining phase to
make sure that the target to which an actuator should be position, net of additional
rotation, is 0 (within a tolerance margin established in the machine parameters). This
allows the feasibility of the machining operations to be checked when there are manually
set up tools such as tilting heads, for example.

The heads can also be positioned according to machining parameters that do not depend
on the kinematics.

Tool parameters DP

91752.DP.1.GB Esa/Gv5.10

PIVOT2

PIVOT1 (X0,Y0,Z0)
in relation to the head

origin

toolholder

dZ2

dX2

dX1

dY
1

C

B

PIVOT1 (X0,Y0,Z0)
in relation to the head

origin

PIVOT2

Positioning head axis
=Z-

X'

Z'

Y'

X'

Figure 5.3 – Characteristic parameters of a FORK_ROTARY_AHEAD head

DP Tool parameters

Esa/Gv 91752.DP.1.GB 5.11

PIVOT1 (X0,Y0,Z0)
in relation to the head

origin

head axes positioning
 =Z-

C

Figure 5.4 – Characteristic parameters of a rotary head

The Positioning field establishes the order and direction of the axes of the system of
coordinates of the spindle, by identifying the new Z axis of the spindle. This indicates
the tool positioning vector (that points from the top of the tool towards the toolholder)
with the spindle in the reference position. 6 settings are available.

Z+

Z-

X+X-

Y-

Y+

1 2

4 6

98

Figure 5.5 -

Tool parameters DP

91752.DP.1.GB Esa/Gv5.12

Z

YX

Z

X

Y

Y

X

Z

YZ

X

X

Y

Z

X

Z

Y

Orient=9 Orient=6 Orient=8

Orient=2Orient=4Orient=1

Figure 5.6 -

DP Tool parameters

Esa/Gv 91752.DP.1.GB 5.13

5.5 Toolholder descriptor

This is selected from a table by means of the THD command.

5.5.1 Data structure

Property of a toolholder
Structure array identifier

thd[n]

It is advisable to specify the actual identifier in capital letters as structure label.

5.5.2 Description of geometry

constant in
Shared.H

field of the
structure type
XCLTHDDATA

P
a
r
a

Meaning

THD_Z0 double dZ0 double dZzero Pivot Z coordinate (it is added to Z”)
THD_FLG THD_TRANSFOR

MATION
Transformation

byte yFlg Order of transformations concerning pivot:

• 1 = First rotation around Z axis, then
pivot X’ Y’ transfer (see (1));

• 2 = First transfer, then rotation
(recommended).

THD_C Double dC double dC Rotation around Z axis
THD_X1 double dX1 double dTXx Pivot X’ coordinate
THD_Y1 double dY1 double dTYy Pivot Y’ coordinate
THD_B double dB double dB Rotation around Y axis

• THD_X2 • double dX2 double dXX X” coordinate of the tool base (it is added to
X’)

• THD_Z2 • double dZ2 double dZZ Z” coordinate of the tool base (it will be
added to the tool length)

TECHNOLOGICAL DATA
T
H

U
L

dword
dwMaxRPM

Maximum rpm rate

T Bbyte yRev Transmission with rotation direction reversal

CONTROL LOGIC
THD_IDX word wToolIdx Installed tool descriptor index (0=absent).

Used depending on the application.
THD_CONE dword dwCone Univocal identifier of the coupling cone for

tool changing purposes, A multiple toolholder
differs from a single one owing to the
presence of several toolholder cones with the
same tool change coupling cone.

(1) By and large, it is used for configuring non-vertical toolholders on a head without
either a numeric actuator or a manual positioning system. For this reason, it is often
easier to configure the absolute position of the toolholder and the relative positioning
than to configure the position the toolholder would have if the head were turned so as to

Tool parameters DP

91752.DP.1.GB Esa/Gv5.14

point it towards the reference axis. If it is true that the ideal solution would be to
introduce a TW1 head with the toolholder’s coordinates, it is also true that when there
are lots of toolholders (e.g.: a boring machine), there would be a large number of head
tables with the sole purpose of differentiating the Cartesian coordinates of the
toolholder. However, if the toolholder was mechanically positionable and rotation
introduced compensations on dX1 and dY1 it would be definitely necessary to configure
a head.

dX2

dZ0

dZ2

dX1

dA

dB

X'

Z'

Figure 5.7 -

DP Tool parameters

Esa/Gv 91752.DP.1.GB 5.15

5.6 Tool or tool cutter descriptor

This is selected from a table by means of the D command.

To be as brief as possible, the word tool will be used to define both a tool and the
cutting edge of a tool.

5.6.1 Data structure

Property of a tool
Structure array identifier

ced[n]

It is advisable to specify the actual identifier in capital letters as structure label.

5.6.2 Description of geometry

Property of a tool
constant in

SHARED.H
field of the
structure

XCLCEDDATA

Parameter
in defcn

Meaning

CED_RAD double dRad double dRad Radius
CED_TRAD double dTRad double dTRad Union radius for toric mill
CED_LENZ double dLenZ double dLenZ Length of the boring/milling tool (will be

added to the Z” of the tool base)
CED_THICK double dThick double dThick Thickness/Distance between interchangeable

cutters;
CED_LENX double dLenX double dLenX Auxiliary length for turning tools (will be

added to the Y” of the tool base)
CED_LENY double dLenY double dLenY Auxiliary length for turning tools (will be

added to the X” of the tool base)
CED_WEAIDX -- word wWeaIdx Tool data extension index for wear

management

Several descriptors can be used in combination with one single toolholder in order to
handle several cutters of the same tool of which the geometry, wear and so forth, must
be differentiated.

Descriptors dLenX, Y and Z may or may not be used depending on the type of tool and
have the meanings shown in the following figure:

Tool parameters DP

91752.DP.1.GB Esa/Gv5.16

dLenY

dRad

dLenX

dRad

dLenZ

Figure 5.8 – Use of offsets on the compensation plane for lathe and milling tools

+ = Center of the toolholder base

Descriptor dTRad is used to describe the geometry of spherical and toric mills, as
illustrated in the figure below:

dTRad=0 cylindrical tool
0< dTRad < dRad toric tool
dTRad =dRad spherical tool

dLenZ

dRad

dTRad=dRad
dTRad

dRad

dLenZdLenZ

dRad
dTRad=0

Figure 5.9 – From the left towards the right, parameters of a cylindrical tool, a toric
tool and a spherical tool

DP Tool parameters

Esa/Gv 91752.DP.1.GB 5.17

A

A

Sez. A-A

dRad

dThick

dZ2
dLenZ

Figure 5.10 – Configuration of a tool with opposed cutting edges that can be
interchanged during the machining process (disk type cutter)

5.6.3 Description of other technological data

Property of a tool
constant in

SHARED.H
field of the
structure

XCLCEDDATA

Parameter in
defcn

Meaning

CED_MINRPM ULONG
ulMinRPM

dword
dwMinRPM

Minimum rpm rate

CED_MAXRPM ULONG
ulMaxRPM

dword
dwMaxRPM

Maximum rpm rate

CED_STDRPM ULONG
ulStdRPM

dword
dwStdRPM

Rpm rate if not specified differently (0= do
not set automatically on tool selection)

CED_CCW BOOLEAN
bCCW

byte bCCW Left-handed tool

CED_MAXFEE
D

double
dMaxFeed

double
dMaxFeed

Maximum linear infeed speed

CED_STDFEED double dStdFeed double dStdFeed Linear infeed speed if not specified
differently (0= do not set automatically on
tool selection)

CED_DIR BOOLEAN bDir byte bDir Enables cutting direction monitoring function
CED_TG BOOLEAN bTg byte bTg Enables tool tangency to path monitoring

function
(e.g.: shaped blade or cutter)

CED_TGTHRE double dTgThre double dTgThre Max. angle of deviation in relation to path

Tool parameters DP

91752.DP.1.GB Esa/Gv5.18

5.6.4 Logic management

Property of a tool
constant in

SHARED.H
field of the
structure

XCLCEDDATA

Parameter in
defcn

Meaning

CED_STATUS -- word wTStat Events that can condition tool use
D2-Dn D1 D0
Not used. Tool faulty

(1)
Tool not
present

(1) Entered by means of a tool measuring cycle failure. Check with laser radius, etc..
Reset when tool is changed.

5.6.5 Broken tools

Locator systems could inform the CNC about tool breakage. For example, a laser could
detect tool breakage once the tool has been installed on the spindle. Depending on the
application, this:

• sets the CNC channel to the alarm status;

• causes searching and installation of a new tool. In this case, the CNC must be
informed about how the tools are organized into groups within which the tools
themselves can be interchanged with each other (tool families).

END OF CHAPTER

What do you think of this manual ?

We would be grateful for opinion about the following aspects of this manual:

Aspect in question Excellent Good Sufficient Insufficient Very bad

Ease with which the data can be consulted

Way in which the descriptions of the
various subjects are given

Completeness

Accuracy

Readability

Correctness of the terminology

Page layout

Number of illustrations

Quality of the illustrations

Please give us an evaluation of the overall quality of each chapter in the manual you have just consulted:

Chapter
number

Excellent Good Sufficient Insufficient Very bad

Please write the code of the manual in this space:

(the code is printed on the frontispiece)

Comments: ___

Write your address in the following space if you consider it necessary:

Name: __

Company: __

Address: __

Tel: ____________________________ Fax: __

Thanks for your help!
You can send this form via FAX, our number is +39-059-851313, or post it to our address: Esa-Gv - Ufficio
Documentazione Tecnica - 15 via Zamboni, Cp 43 - 41011 Campogalliano (Italy)
http://www.esagv.it - E-mail: info@esagv.it

